143 research outputs found

    Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks

    Full text link
    We propose an adaptive scheme for distributed learning of nonlinear functions by a network of nodes. The proposed algorithm consists of a local adaptation stage utilizing multiple kernels with projections onto hyperslabs and a diffusion stage to achieve consensus on the estimates over the whole network. Multiple kernels are incorporated to enhance the approximation of functions with several high and low frequency components common in practical scenarios. We provide a thorough convergence analysis of the proposed scheme based on the metric of the Cartesian product of multiple reproducing kernel Hilbert spaces. To this end, we introduce a modified consensus matrix considering this specific metric and prove its equivalence to the ordinary consensus matrix. Besides, the use of hyperslabs enables a significant reduction of the computational demand with only a minor loss in the performance. Numerical evaluations with synthetic and real data are conducted showing the efficacy of the proposed algorithm compared to the state of the art schemes.Comment: Double-column 15 pages, 10 figures, submitted to IEEE Trans. Signal Processin

    Analyzing sparse dictionaries for online learning with kernels

    Full text link
    Many signal processing and machine learning methods share essentially the same linear-in-the-parameter model, with as many parameters as available samples as in kernel-based machines. Sparse approximation is essential in many disciplines, with new challenges emerging in online learning with kernels. To this end, several sparsity measures have been proposed in the literature to quantify sparse dictionaries and constructing relevant ones, the most prolific ones being the distance, the approximation, the coherence and the Babel measures. In this paper, we analyze sparse dictionaries based on these measures. By conducting an eigenvalue analysis, we show that these sparsity measures share many properties, including the linear independence condition and inducing a well-posed optimization problem. Furthermore, we prove that there exists a quasi-isometry between the parameter (i.e., dual) space and the dictionary's induced feature space.Comment: 10 page

    Recovering Latent Signals from a Mixture of Measurements using a Gaussian Process Prior

    Full text link
    In sensing applications, sensors cannot always measure the latent quantity of interest at the required resolution, sometimes they can only acquire a blurred version of it due the sensor's transfer function. To recover latent signals when only noisy mixed measurements of the signal are available, we propose the Gaussian process mixture of measurements (GPMM), which models the latent signal as a Gaussian process (GP) and allows us to perform Bayesian inference on such signal conditional to a set of noisy mixture of measurements. We describe how to train GPMM, that is, to find the hyperparameters of the GP and the mixing weights, and how to perform inference on the latent signal under GPMM; additionally, we identify the solution to the underdetermined linear system resulting from a sensing application as a particular case of GPMM. The proposed model is validated in the recovery of three signals: a smooth synthetic signal, a real-world heart-rate time series and a step function, where GPMM outperformed the standard GP in terms of estimation error, uncertainty representation and recovery of the spectral content of the latent signal.Comment: Published on IEEE Signal Processing Letters on Dec. 201

    Recursive multikernel filters exploiting nonlinear temporal structure

    Get PDF
    In kernel methods, temporal information on the data is commonly included by using time-delayed embeddings as inputs. Recently, an alternative formulation was proposed by defining a γ-filter explicitly in a reproducing kernel Hilbert space, giving rise to a complex model where multiple kernels operate on different temporal combinations of the input signal. In the original formulation, the kernels are then simply combined to obtain a single kernel matrix (for instance by averaging), which provides computational benefits but discards important information on the temporal structure of the signal. Inspired by works on multiple kernel learning, we overcome this drawback by considering the different kernels separately. We propose an efficient strategy to adaptively combine and select these kernels during the training phase. The resulting batch and online algorithms automatically learn to process highly nonlinear temporal information extracted from the input signal, which is implicitly encoded in the kernel values. We evaluate our proposal on several artificial and real tasks, showing that it can outperform classical approaches both in batch and online settings.S. Van Vaerenbergh is supported by the Spanish Ministry of Economy and Competitiveness (under project TEC2014-57402-JIN). S. Scardapane is supported in part by Italian MIUR, “Progetti di Ricerca di Rilevante Interesse Nazionale”, GAUChO project, under Grant 2015YPXH4W-004

    A stochastic behavior analysis of stochastic restricted-gradient descent algorithm in reproducing kernel Hilbert spaces

    Full text link
    This paper presents a stochastic behavior analysis of a kernel-based stochastic restricted-gradient descent method. The restricted gradient gives a steepest ascent direction within the so-called dictionary subspace. The analysis provides the transient and steady state performance in the mean squared error criterion. It also includes stability conditions in the mean and mean-square sense. The present study is based on the analysis of the kernel normalized least mean square (KNLMS) algorithm initially proposed by Chen et al. Simulation results validate the analysis
    • …
    corecore