34 research outputs found

    Searching Multi-Hierarchical XML Documents: the Case of Fragmentation

    Get PDF
    To properly encode properties of textual documents using XML, multiple markup hierarchies must be used, often leading to conflicting markup in encodings. Text Encoding Initiative (TEI) Guidelines [1] recognize this problem and suggest a number of ways to incorporate multiple hierarchies in a single well-formed XML document. In this paper, we present a framework for processing XPath queries over multi-hierarchical XML documents represented using fragmentation, one of the TEI-suggested techniques. We define the semantics of XPath over DOM trees of fragmented XML, extend the path expression language to cover overlap in markup, and describe FragXPath, our implementation of the proposed XPath semantics over fragmented markup

    A Hierarchical Extension of the D ∗ Algorithm

    Get PDF
    In this paper a contribution to the practice of path planning using a new hierarchical extension of the D ∗ algorithm is introduced. A hierarchical graph is stratified into several abstraction levels and used to model environments for path planning. The hierarchical D∗ algorithm uses a downtop strategy and a set of pre-calculated trajectories in order to improve performance. This allows optimality and specially lower computational time. It is experimentally proved how hierarchical search algorithms and on-line path planning algorithms based on topological abstractions can be combined successfully

    Hierarchical D ∗ algorithm with materialization of costs for robot path planning

    Get PDF
    In this paper a new hierarchical extension of the D ∗ algorithm for robot path planning is introduced. The hierarchical D ∗ algorithm uses a down-top strategy and a set of precalculated paths (materialization of path costs) in order to improve performance. This on-line path planning algorithm allows optimality and specially lower computational time. H-Graphs (hierarchical graphs) are modified and adapted to support on-line path planning with materialization of costs and multiple hierarchical levels. Traditional on-line robot path planning focused in horizontal spaces is also extended to vertical and interbuilding spaces. Some experimental results are showed and compared to other path planning algorithms

    Tagging, Folksonomy & Co - Renaissance of Manual Indexing?

    Get PDF
    This paper gives an overview of current trends in manual indexing on the Web. Along with a general rise of user generated content there are more and more tagging systems that allow users to annotate digital resources with tags (keywords) and share their annotations with other users. Tagging is frequently seen in contrast to traditional knowledge organization systems or as something completely new. This paper shows that tagging should better be seen as a popular form of manual indexing on the Web. Difference between controlled and free indexing blurs with sufficient feedback mechanisms. A revised typology of tagging systems is presented that includes different user roles and knowledge organization systems with hierarchical relationships and vocabulary control. A detailed bibliography of current research in collaborative tagging is included.Comment: Preprint. 12 pages, 1 figure, 54 reference

    Multi-level chirality in liquid crystals formed by achiral molecules

    Get PDF
    M.S., D.P., and N.V. acknowledge the support of the National Science Centre (Poland) under the grant no. 2016/22/A/ST5/00319. E.G. acknowledges the funding from the Foundation for Polish Science through the Sabbatical Fellowships Program. N.V. acknowledges the support of the Slovenian Research Agency (ARRS), through the research core funding no. P1-0055. R.W. gratefully acknowledges the Carnegie Trust for the Universities of Scotland for funding the award of a PhD scholarship. The beamline 11.0.1.2 at the Advanced Light Source at the Lawrence Berkeley National Laboratory is supported by the director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.Peer reviewedPublisher PD

    A multiple layer model to compare RNA secondary structures

    Get PDF
    International audienceWe formally introduce a new data structure, called MiGaL for ``Multiple Graph Layers'', that is composed of various graphs linked together by relations of abstraction/refinement. The new structure is useful for representing information that can be described at different levels of abstraction, each level corresponding to a graph. We then propose an algorithm for comparing two MiGaLs. The algorithm performs a step-by-step comparison starting with the most ``abstract'' level. The result of the comparison at a given step is communicated to the next step using a special colouring scheme. MiGaLs represent a very natural model for comparing RNA secondary structures that may be seen at different levels of detail, going from the sequence of nucleotides, single or paired with another to participate in a helix, to the network of multiple loops that is believed to represent the most conserved part of RNAs having similar function. We therefore show how to use MiGaLs to very efficiently compare two RNAs of any size at different levels of detail

    Pattern-based design applied to cultural heritage knowledge graphs

    Full text link
    Ontology Design Patterns (ODPs) have become an established and recognised practice for guaranteeing good quality ontology engineering. There are several ODP repositories where ODPs are shared as well as ontology design methodologies recommending their reuse. Performing rigorous testing is recommended as well for supporting ontology maintenance and validating the resulting resource against its motivating requirements. Nevertheless, it is less than straightforward to find guidelines on how to apply such methodologies for developing domain-specific knowledge graphs. ArCo is the knowledge graph of Italian Cultural Heritage and has been developed by using eXtreme Design (XD), an ODP- and test-driven methodology. During its development, XD has been adapted to the need of the CH domain e.g. gathering requirements from an open, diverse community of consumers, a new ODP has been defined and many have been specialised to address specific CH requirements. This paper presents ArCo and describes how to apply XD to the development and validation of a CH knowledge graph, also detailing the (intellectual) process implemented for matching the encountered modelling problems to ODPs. Relevant contributions also include a novel web tool for supporting unit-testing of knowledge graphs, a rigorous evaluation of ArCo, and a discussion of methodological lessons learned during ArCo development

    NAPG: Non-Autoregressive Program Generation for Hybrid Tabular-Textual Question Answering

    Full text link
    Hybrid tabular-textual question answering (QA) requires reasoning from heterogeneous information, and the types of reasoning are mainly divided into numerical reasoning and span extraction. Despite being the main challenge of the task compared to extractive QA, current numerical reasoning method simply uses LSTM to autoregressively decode program sequences, and each decoding step produces either an operator or an operand. However, the step-by-step decoding suffers from exposure bias, and the accuracy of program generation drops sharply with progressive decoding. In this paper, we propose a non-autoregressive program generation framework, which facilitates program generation in parallel. Our framework, which independently generates complete program tuples containing both operators and operands, can significantly boost the speed of program generation while addressing the error accumulation issue. Our experiments on the MultiHiertt dataset shows that our model can bring about large improvements (+7.97 EM and +6.38 F1 points) over the strong baseline, establishing the new state-of-the-art performance, while being much faster (21x) in program generation. The performance drop of our method is also significantly smaller than the baseline with increasing numbers of numerical reasoning steps

    Mobile Robot Navigation in Indoor Environments: Geometric, Topological, and Semantic Navigation

    Get PDF
    The objective of the chapter is to show current trends in robot navigation systems related to indoor environments. Navigation systems depend on the level of abstraction of the environment representation. The three main techniques for representing the environment will be described: geometric, topological, and semantic. The geometric representation of the environment is closer to the sensor and actuator world and it is the best one to perform local navigation. Topological representation of the environment uses graphs to model the environment and it is used in large navigation tasks. The semantic representation is the most abstract representation model and adds concepts such as utilities or meanings of the environment elements in the map representation. In addition, regardless of the representation used for navigation, perception plays a significant role in terms of understanding and moving through the environment
    corecore