52 research outputs found

    A robust multigrid approach for variational image registration models

    Get PDF
    AbstractVariational registration models are non-rigid and deformable imaging techniques for accurate registration of two images. As with other models for inverse problems using the Tikhonov regularization, they must have a suitably chosen regularization term as well as a data fitting term. One distinct feature of registration models is that their fitting term is always highly nonlinear and this nonlinearity restricts the class of numerical methods that are applicable. This paper first reviews the current state-of-the-art numerical methods for such models and observes that the nonlinear fitting term is mostly ‘avoided’ in developing fast multigrid methods. It then proposes a unified approach for designing fixed point type smoothers for multigrid methods. The diffusion registration model (second-order equations) and a curvature model (fourth-order equations) are used to illustrate our robust methodology. Analysis of the proposed smoothers and comparisons to other methods are given. As expected of a multigrid method, being many orders of magnitude faster than the unilevel gradient descent approach, the proposed numerical approach delivers fast and accurate results for a range of synthetic and real test images

    A new curvature-based image registration model and its fast algorithm

    Get PDF

    A Total Fractional-Order Variation Model for Image Restoration with Non-homogeneous Boundary Conditions and its Numerical Solution

    Get PDF
    To overcome the weakness of a total variation based model for image restoration, various high order (typically second order) regularization models have been proposed and studied recently. In this paper we analyze and test a fractional-order derivative based total α\alpha-order variation model, which can outperform the currently popular high order regularization models. There exist several previous works using total α\alpha-order variations for image restoration; however first no analysis is done yet and second all tested formulations, differing from each other, utilize the zero Dirichlet boundary conditions which are not realistic (while non-zero boundary conditions violate definitions of fractional-order derivatives). This paper first reviews some results of fractional-order derivatives and then analyzes the theoretical properties of the proposed total α\alpha-order variational model rigorously. It then develops four algorithms for solving the variational problem, one based on the variational Split-Bregman idea and three based on direct solution of the discretise-optimization problem. Numerical experiments show that, in terms of restoration quality and solution efficiency, the proposed model can produce highly competitive results, for smooth images, to two established high order models: the mean curvature and the total generalized variation.Comment: 26 page

    Non Uniform Multiresolution Method for Optical Flow and Phase Portrait Models: Environmental Applications

    Get PDF
    Projet AIRIn this paper we define a complete framework for processing large image sequences for a global monitoring of short range oceanographic and atmospheric processes. This framework is based on the use of a non quadratic regularization technique in optical flow computation that preserves flow discontinuities. We also show that using an appropriate tessellation of the image according to an estimate of the motion field can improve optical flow accuracy and yields more reliable flows. This method defines a non uniform multiresolution approach for coarse to fine grid generation. It allows to locally increase the resolution of the grid according to the studied problem. Each added node refines the grid in a region of interest and increases the numerical accuracy of the solution in this region. We make use of such a method for solving the optical flow equation with a non quadratic regularization scheme allowing the computation of optical flow field while preserving its discontinuities. The second part of the paper deals with the interpretation of the obtained displacement field. We make use of a phase portrait model with a new formulation of the approximation of an oriented flow field allowing to consider arbitrary polynomial phase portrait models for characterizing salient flow features. This new framework is used for processing oceanographic and atmospheric image sequences and presents an alternative to complex physical modeling techniques

    An augmented Lagrangian method for solving total variation (TV)-based image registration model

    Get PDF
    Variational methods for image registration basically involve a regularizer to ensure that the resulting well-posed problem admits a solution. Different choices of regularizers lead to different deformations. On one hand, the conventional regularizers, such as the elastic, diffusion and curvature regularizers, are able to generate globally smooth deformations and generally useful for many applications. On the other hand, these regularizers become poor in some applications where discontinuities or steep gradients in the deformations are required. As is well-known, the total (TV) variation regularizer is more appropriate to preserve discontinuities of the deformations. However, it is difficult in developing an efficient numerical method to ensure that numerical solutions satisfy this requirement because of the non-differentiability and non-linearity of the TV regularizer. In this work we focus on computational challenges arising in approximately solving TV-based image registration model. Motivated by many efficient numerical algorithms in image restoration, we propose to use augmented Lagrangian method (ALM). At each iteration, the computation of our ALM requires to solve two subproblems. On one hand for the first subproblem, it is impossible to obtain exact solution. On the other hand for the second subproblem, it has a closed-form solution. To this end, we propose an efficient nonlinear multigrid (NMG) method to obtain an approximate solution to the first subproblem. Numerical results on real medical images not only confirm that our proposed ALM is more computationally efficient than some existing methods, but also that the proposed ALM delivers the accurate registration results with the desired property of the constructed deformations in a reasonable number of iterations

    Compressed Optical Imaging

    Get PDF
    We address the resolution of inverse problems where visual data must be recovered from incomplete information optically acquired in the spatial domain. The optical acquisition models that are involved share a common mathematical structure consisting of a linear operator followed by optional pointwise nonlinearities. The linear operator generally includes lowpass filtering effects and, in some cases, downsampling. Both tend to make the problems ill-posed. Our general resolution strategy is to rely on variational principles, which allows for a tight control on the objective or perceptual quality of the reconstructed data. The three related problems that we investigate and propose to solve are 1. The reconstruction of images from sparse samples. Following a non-ideal acquisition framework, the measurements take the form of spatial-domain samples whose locations are specified a priori. The reconstruction algorithm that we propose is linked to PDE flows with tensor-valued diffusivities. We demonstrate through several experiments that our approach preserves finer visual features than standard interpolation techniques do, especially at very low sampling rates. 2. The reconstruction of images from binary measurements. The acquisition model that we consider relies on optical principles and fits in a compressed-sensing framework. We develop a reconstruction algorithm that allows us to recover grayscale images from the available binary data. It substantially improves upon the state of the art in terms of quality and computational performance. Our overall approach is physically relevant; moreover, it can handle large amounts of data efficiently. 3. The reconstruction of phase and amplitude profiles from single digital holographic acquisitions. Unlike conventional approaches that are based on demodulation, our iterative reconstruction method is able to accurately recover the original object from a single downsampled intensity hologram, as shown in simulated and real measurement settings. It also consistently outperforms the state of the art in terms of signal-to-noise ratio and with respect to the size of the field of view. The common goal of the proposed reconstruction methods is to yield an accurate estimate of the original data from all available measurements. In accordance with the forward model, they are typically capable of handling samples that are sparse in the spatial domain and/or distorted due to pointwise nonlinear effects, as demonstrated in our experiments

    Multigrid Geometric Active Contour Models

    Full text link

    Time-consistent estimators of 2D/3D motion of atmospheric layers from pressure images

    Get PDF
    In this paper, we face the challenging problem of estimation of time-consistent layer motion fields at various atmospheric depths. Based on a vertical decomposition of the atmosphere, we propose three different dense motion estimator relying on multi-layer dynamical models. In the first method, we propose a mass conservation model which constitutes the physical background of a multi-layer dense estimator. In the perspective of adapting motion analysis to atmospheric motion, we propose in this method a two-stage decomposition estimation scheme. The second method proposed in this paper relying on a 3D physical model for a stack of interacting layers allows us to recover a vertical motion information. In the last method, we use the exact shallow-water formulation of the Navier-Stokes equations to control the motion evolution across the sequence. This is done through a variational approach derived from data assimilation principle which combines the dynamical model and the pressure difference observations obtained from satellite images. The three methods use sparse pressure difference image observations derived from top of cloud images and classification maps. The proposed approaches are validated on synthetic example and applied to real world meteorological satellite image sequences

    Variational Fluid Motion Estimation with Physical Priors

    Full text link
    In this thesis, techniques for Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) are developed that are based on variational methods. The basic idea is not to estimate displacement vectors locally and individually, but to estimate vector fields as a whole by minimizing a suitable functional defined over the entire image domain (which may be 2D or 3D and may also include the temporal dimension). Such functionals typically comprise two terms: a data-term measuring how well two images of a sequence match as a function of the vector field to be estimated, and a regularization term that brings prior knowledge into the energy functional. Our starting point are methods that were originally developed in the field of computer vision and that we modify for the purpose of PIV. These methods are based on the so-called optical flow: Optical flow denotes the estimated velocity vector inferred by a relative motion of camera and image scene and is based on the assumption of gray value conservation (i.e. the total derivative of the image gray value over time is zero). A regularization term (that demands e.g. smoothness of the velocity field, or of its divergence and rotation) renders the system mathematically well-posed. Experimental evaluation shows that this type of variational approach is able to outperform standard cross-correlation methods. In order to develop a variational method for PTV, we replace the continuous data term of variational approaches to PIV with a discrete non-differentiable particle matching term. This raises the problem of minimizing such data terms together with continuous regularization terms. We accomplish this with an advanced mathematical method, which guarantees convergence to a local minimum of such a non-convex variational approach to PTV. With this novel variational approach (there has been no previous work on modeling PTV methods with global variational approaches), we achieve results for image pairs and sequences in two and three dimensions that outperform the relaxation methods that are traditionally used for particle tracking. The key advantage of our variational particle image velocimetry methods, is the chance to include prior knowledge in a natural way. In the fluid environments that we are considering in this thesis, it is especially attractive to use priors that can be motivated from a physical point of view. Firstly, we present a method that only allows flow fields that satisfy the Stokes equation. The latter equation includes control variables that allow to control the optical flow so as to fit the apparent velocities of particles in a given image pair. Secondly, we present a variational approach to motion estimation of instationary fluid flows. This approach extends the prior method along two directions: (i) The full incompressible Navier-Stokes equation is employed in order to obtain a physically consistent regularization which does not suppress turbulent flow variations. (ii) Regularization along the time-axis is employed as well, but formulated in a receding horizon manner contrary to previous approaches to spatio-temporal regularization. Ground-truth evaluations for simulated turbulent flows demonstrate that the accuracy of both types of physically plausible regularization compares favorably with advanced cross-correlation approaches. Furthermore, the direct estimation of, e.g., pressure or vorticity becomes possible
    • …
    corecore