90 research outputs found

    The M\"obius Domain Wall Fermion Algorithm

    Full text link
    We present a review of the properties of generalized domain wall Fermions, based on a (real) M\"obius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (mresm_{res}) and the Ward-Takahashi identities. The M\"obius class interpolates between Shamir's domain wall operator and Bori\c{c}i's domain wall implementation of Neuberger's overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α\alpha) reduces chiral violations at finite fifth dimension (LsL_s) but yields exactly the same overlap action in the limit Ls→∞L_s \rightarrow \infty. Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(Ls)\alpha(L_s), we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed LsL_s. At large LsL_s we argue that the observed scaling for mres=O(1/Ls)m_{res} = O(1/L_s) for Shamir is replaced by mres=O(1/Ls2)m_{res} = O(1/L_s^2) for the properly tuned M\"obius algorithm with α=O(Ls)\alpha = O(L_s)Comment: 59 pages, 11 figure

    Algebraic Multigrid for Disordered Systems and Lattice Gauge Theories

    Get PDF
    The construction of multigrid operators for disordered linear lattice operators, in particular the fermion matrix in lattice gauge theories, by means of algebraic multigrid and block LU decomposition is discussed. In this formalism, the effective coarse-grid operator is obtained as the Schur complement of the original matrix. An optimal approximation to it is found by a numerical optimization procedure akin to Monte Carlo renormalization, resulting in a generalized (gauge-path dependent) stencil that is easily evaluated for a given disorder field. Applications to preconditioning and relaxation methods are investigated.Comment: 43 pages, 14 figures, revtex4 styl
    • …
    corecore