273 research outputs found

    Preconditioned iterative methods for Navier-Stokes control problems

    Get PDF
    PDE-constrained optimization problems are a class of problems which have attracted much recent attention in scientific computing and applied science. In this paper, we discuss preconditioned iterative methods for a class of Navier-Stokes control problems, one of the main problems of this type in the field of fluid dynamics. Having detailed the Oseen-type iteration we use to solve the problems and derived the structure of the matrix system to be solved at each step, we utilize the theory of saddle point systems to develop efficient preconditioned iterative solution techniques for these problems. We also require theory of solving convection-diffusion control problems, as well as a commutator argument to justify one of the components of the preconditioner

    Preconditioners for computing multiple solutions in three-dimensional fluid topology optimization

    Full text link
    Topology optimization problems generally support multiple local minima, and real-world applications are typically three-dimensional. In previous work [I. P. A. Papadopoulos, P. E. Farrell, and T. M. Surowiec, Computing multiple solutions of topology optimization problems, SIAM Journal on Scientific Computing, (2021)], the authors developed the deflated barrier method, an algorithm that can systematically compute multiple solutions of topology optimization problems. In this work we develop preconditioners for the linear systems arising in the application of this method to Stokes flow, making it practical for use in three dimensions. In particular, we develop a nested block preconditioning approach which reduces the linear systems to solving two symmetric positive-definite matrices and an augmented momentum block. An augmented Lagrangian term is used to control the innermost Schur complement and we apply a geometric multigrid method with a kernel-capturing relaxation method for the augmented momentum block. We present multiple solutions in three-dimensional examples computed using the proposed iterative solver

    Preconditioners for Krylov subspace methods: An overview

    Get PDF
    When simulating a mechanism from science or engineering, or an industrial process, one is frequently required to construct a mathematical model, and then resolve this model numerically. If accurate numerical solutions are necessary or desirable, this can involve solving large-scale systems of equations. One major class of solution methods is that of preconditioned iterative methods, involving preconditioners which are computationally cheap to apply while also capturing information contained in the linear system. In this article, we give a short survey of the field of preconditioning. We introduce a range of preconditioners for partial differential equations, followed by optimization problems, before discussing preconditioners constructed with less standard objectives in mind

    Efficient Solvers for Space-Time Discontinuous Galerkin Spectral Element Methods

    Get PDF
    In this thesis we study efficient solvers for space-time discontinuous Galerkin spectral element methods (DG-SEM). These discretizations result in fully implicit schemes of variable order in both spatial and temporal directions. The popularity of space-time DG methods has increased in recent years and entropy stable space-time DG-SEM have been constructed for conservation laws, making them interesting for these applications. The size of the nonlinear system resulting from differential equations discretized with space-time DG-SEM is dependent on the order of the method, and the corresponding Jacobian is of block form with dense blocks. Thus, the problem arises to efficiently solve these huge nonlinear systems with regards to CPU time as well as memory consumption. The lack of good solvers for three-dimensional DG applications has been identified as one of the major obstacles before high order methods can be adapted for industrial applications.It has been proven that DG-SEM in time and Lobatto IIIC Runge-Kutta methods are equivalent, in that both methods lead to the same discrete solution. This allows to implement space-time DG-SEM in two ways: Either as a full space-time system or by decoupling the temporal elements and using implicit time-stepping with Lobatto IIIC methods. We compare theoretical properties and discuss practical aspects of the respective implementations.When considering the full space-time system, multigrid can be used as solver. We analyze this solver with the local Fourier analysis, which gives more insight into the efficiency of the space-time multigrid method. The other option is to decouple the temporal elements and use implicit Runge-Kutta time-stepping methods. We suggest to use Jacobian-free Newton-Krylov (JFNK) solvers since they are advantageous memory-wise. An efficient preconditioner for the Krylov sub-solver is needed to improve the convergence speed. However, we want to avoid constructing or storing the Jacobian, otherwise the favorable memory consumption of the JFNK approach would be obsolete. We present a preconditioner based on an auxiliary first order finite volume replacement operator. Based on the replacement operator we construct an agglomeration multigrid preconditioner with efficient smoothers using pseudo time integrators. Then only the Jacobian of the replacement operator needs to be constructed and the DG method is still Jacobian-free. Numerical experiments for hyperbolic test problems as the advection, advection-diffusion and Euler equations in several dimensions demonstrate the potential of the new approach

    Fast iterative solvers for PDE-constrained optimization problems

    Get PDF
    In this thesis, we develop preconditioned iterative methods for the solution of matrix systems arising from PDE-constrained optimization problems. In order to do this, we exploit saddle point theory, as this is the form of the matrix systems we wish to solve. We utilize well-known results on saddle point systems to motivate preconditioners based on effective approximations of the (1,1)-block and Schur complement of the matrices involved. These preconditioners are used in conjunction with suitable iterative solvers, which include MINRES, non-standard Conjugate Gradients, GMRES and BiCG. The solvers we use are selected based on the particular problem and preconditioning strategy employed. We consider the numerical solution of a range of PDE-constrained optimization problems, namely the distributed control, Neumann boundary control and subdomain control of Poisson's equation, convection-diffusion control, Stokes and Navier-Stokes control, the optimal control of the heat equation, and the optimal control of reaction-diffusion problems arising in chemical processes. Each of these problems has a special structure which we make use of when developing our preconditioners, and specific techniques and approximations are required for each problem. In each case, we motivate and derive our preconditioners, obtain eigenvalue bounds for the preconditioners where relevant, and demonstrate the effectiveness of our strategies through numerical experiments. The goal throughout this work is for our iterative solvers to be feasible and reliable, but also robust with respect to the parameters involved in the problems we consider

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Discretisations and Preconditioners for Magnetohydrodynamics Models

    Full text link
    The magnetohydrodynamics (MHD) equations are generally known to be difficult to solve numerically, due to their highly nonlinear structure and the strong coupling between the electromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In the first part of this work, we present a scalable augmented Lagrangian preconditioner for a finite element discretisation of the B\mathbf{B}-E\mathbf{E} formulation of the incompressible viscoresistive MHD equations. For stationary problems, our solver achieves robust performance with respect to the Reynolds and coupling numbers in two dimensions and good results in three dimensions. Our approach relies on specialised parameter-robust multigrid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the magnetic field up to solver tolerances. In the second part, we focus on incompressible, resistive Hall MHD models and derive structure-preserving finite element methods for these equations. We present a variational formulation of Hall MHD that enforces the magnetic Gauss's law precisely (up to solver tolerances) and prove the well-posedness of a Picard linearisation. For the transient problem, we present time discretisations that preserve the energy and magnetic and hybrid helicity precisely in the ideal limit for two types of boundary conditions. In the third part, we investigate anisothermal MHD models. We start by performing a bifurcation analysis for a magnetic Rayleigh--B\'enard problem at a high coupling number S=1,000S=1{,}000 by choosing the Rayleigh number in the range between 0 and 100,000100{,}000 as the bifurcation parameter. We study the effect of the coupling number on the bifurcation diagram and outline how we create initial guesses to obtain complex solution patterns and disconnected branches for high coupling numbers.Comment: Doctoral thesis, Mathematical Institute, University of Oxford. 174 page

    Block Preconditioners for the Navier-Stokes Equations

    Get PDF
    In recent years, considerable effort has been placed on developing efficient and robust solution algorithms for the incompressible Navier--Stokes equations based on preconditioned Krylov methods. These include physics-based methods, such as SIMPLE, and purely algebraic preconditioners based on the approximation of the Schur complement. All these techniques can be represented as approximate block factorization (ABF) type preconditioners. The goal is to decompose the application of the preconditioner into simplified sub-systems in which scalable multi-level type solvers can be applied. In this dissertation we develop a taxonomy of these ideas based on an adaptation of a generalized approximate factorization of the Navier-Stokes system first presented in [45]. This taxonomy illuminates the similarities and differences among these preconditioners and the central role played by efficient approximation of certain Schur complement operators. We then present a parallel computational study that examines the performance of these methods and compares them to an additive Schwarz domain decomposition (DD) algorithm. Results are presented for two and three-dimensional steady state problems for enclosed domains and inflow/outflow systems on both structured and unstructured meshes. The numerical experiments are performed using MPSalsa, a stabilized finite element code. We have also tested the utility of these methods in a more realistic fluid setting by solving an optimization problem related to the shape and topology of a microfluidic mixing device. This flow is modeled by Induced Charged Electro-osmosis (ICEO) described in [54]. The numerical results are performed using Sundance, a tool for the development of finite-element solutions of partial differential equations
    corecore