3 research outputs found

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Multifunctional Platform with CMOS-Compatible Tungsten Microhotplate for Pirani, Temperature, and Gas Sensor

    No full text
    A multifunctional platform based on the microhotplate was developed for applications including a Pirani vacuum gauge, temperature, and gas sensor. It consisted of a tungsten microhotplate and an on-chip operational amplifier. The platform was fabricated in a standard complementary metal oxide semiconductor (CMOS) process. A tungsten plug in standard CMOS process was specially designed as the serpentine resistor for the microhotplate, acting as both heater and thermister. With the sacrificial layer technology, the microhotplate was suspended over the silicon substrate with a 340 nm gap. The on-chip operational amplifier provided a bias current for the microhotplate. This platform has been used to develop different kinds of sensors. The first one was a Pirani vacuum gauge ranging from 1-1 to 105 Pa. The second one was a temperature sensor ranging from -20 to 70 °C. The third one was a thermal-conductivity gas sensor, which could distinguish gases with different thermal conductivities in constant gas pressure and environment temperature. In the fourth application, with extra fabrication processes including the deposition of gas-sensitive film, the platform was used as a metal-oxide gas sensor for the detection of gas concentration
    corecore