553 research outputs found

    Advances in the inspection of unpiggable pipelines

    Get PDF
    The field of in-pipe robotics covers a vast and varied number of approaches to the inspection of pipelines with robots specialising in pipes ranging anywhere from 10 mm to 1200 mm in diameter. Many of these developed systems focus on overcoming in-pipe obstacles such as T-sections and elbows, as a result important aspects of exploration are treated as sub-systems, namely shape adaptability. One of the most prevalent methods of hybridised locomotion today is wall-pressing; generating traction using the encompassing pipe walls. A review of wall-pressing systems has been performed, covering the different approaches taken since their introduction. The advantages and disadvantages of these systems is discussed as well as their effectiveness in the inspection of networks with highly varying pipe diameters. When compared to unconventional in-pipe robotic techniques, traditional full-bore wall-pressing robots were found to be at a disadvantage

    Roadmap on measurement technologies for next generation structural health monitoring systems

    Get PDF
    Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots

    Design and Fabrication of Soft 3D Printed Actuators: Expanding Soft Robotics Applications

    Get PDF
    Soft pneumatic actuators are ideal for soft robotic applications due to their innate compliance and high power-weight ratios. Presently, the majority of soft pneumatic actuators are used to create bending motions, with very few able to produce significant linear movements. Fewer can actively produce strains in multiple directions. The further development of these actuators is limited by their fabrication methods, specifically the lack of suitable stretchable materials for 3D printing. In this thesis, a new highly elastic resin for digital light projection 3D printers, designated ElastAMBER, is developed and evaluated, which shows improvements over previously synthesised elastic resins. It is prepared from a di-functional polyether urethane acrylate oligomer and a blend of two different diluent monomers. ElastAMBER exhibits a viscosity of 1000 mPa.s at 40 °C, allowing easy printing at near room temperatures. The 3D-printed components present an elastomeric behaviour with a maximum extension ratio of 4.02 ± 0.06, an ultimate tensile strength of (1.23 ± 0.09) MPa, low hysteresis, and negligible viscoelastic relaxation

    Mobiles Robots - Past Present and Future

    Get PDF

    Theory of Self-maintaining Robots

    Get PDF
    This thesis proposes a theory for robotic systems that can be fully self-maintaining. The presented design principles focus on functional survival of the robots over long periods of time without human maintenance. Self-maintaining semi-autonomous mobile robots are in great demand in nuclear disposal sites from where their removal for maintenance is undesirable due to their radioactive contamination. Similar are requirements for robots in various defence tasks or space missions. For optimal design, modular solutions are balanced against capabilities to replace smaller components in a robot by itself or by help from another robot. Modules are proposed for the basic platform, which enable self-maintenance within a team of robots helping each other. The primary method of self-maintenance is replacement of malfunctioning modules or components by the robots themselves. Replacement necessitates a robot team’s ability to diagnose and replace malfunctioning modules as needed. Due to their design, these robots still remain manually re-configurable if opportunity arises for human intervention. A system reliability model is developed to describe the new theory. Depending on the system reliability model, the redundancy allocation problem is presented and solved by a multi objective algorithm. Finally, the thesis introduces the self-maintaining process and transfers it to a multi robot task allocation problem with a solution by genetic algorithm

    System-Engineered Miniaturized Robots: From Structure to Intelligence

    Get PDF
    The development of small machines, once envisioned by Feynman decades ago, has stimulated significant research in materials science, robotics, and computer science. Over the past years, the field of miniaturized robotics has rapidly expanded with many research groups contributing to the numerous challenges inherent to this field. Smart materials have played a particularly important role as they have imparted miniaturized robots with new functionalities and distinct capabilities. However, despite all efforts and many available soft materials and innovative technologies, a fully autonomous system-engineered miniaturized robot (SEMR) of any practical relevance has not been developed yet. In this review, the foundation of SEMRs is discussed and six main areas (structure, motion, sensing, actuation, energy, and intelligence) which require particular efforts to push the frontiers of SEMRs further are identified. During the past decade, miniaturized robotic research has mainly relied on simplicity in design, and fabrication. A careful examination of current SEMRs that are physically, mechanically, and electrically engineered shows that they fall short in many ways concerning miniaturization, full-scale integration, and self-sufficiency. Some of these issues have been identified in this review. Some are inevitably yet to be explored, thus, allowing to set the stage for the next generation of intelligent, and autonomously operating SEMRs

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world
    • …
    corecore