6 research outputs found

    Multifractality and Dimensional Determinism in Local Optima Networks

    Get PDF
    We conduct a study of networks of local optimas in a search space using fractal dimensions. The fractal dimension (FD) of these networks is a complexity index which assigns a non-integer dimension to an object. We propose a fine-grained approach to obtaining the FD of LONs, using the probabilistic search transitions encoded in LON edge weights. We then apply multi-fractal calculations to LONs for the first time, comparing with mono-fractal analysis. For complex systems such as LONs, the dimensionality may be different between two sub-systems and multi-fractal analysis is needed. Here we focus on the Quadratic Assignment Problem (QAP), conducting fractal analyses on sampled LONs of reasonable size for the first time. We also include fully enumerated LONs of smaller size. Our results show that local optima spaces can be multi-fractal and that valuable information regarding stochastic self-similarity is encoded in the edge weights of local optima networks. Links are drawn between these phenomena and the performance of two competitive metaheuristic algorithms

    The Fractal Geometry of Fitness Landscapes at the Local Optima Level

    Get PDF
    A local optima network (LON) encodes local optima connectivity in the fitness landscape of a combinatorial optimisation problem. Recently, LONs have been studied for their fractal dimension. Fractal dimension is a complexity index where a non-integer dimension can be assigned to a pattern. This paper investigates the fractal nature of LONs and how that nature relates to metaheuristic performance on the underlying problem. We use visual analysis, correlation analysis, and machine learning techniques to demonstrate that relationships exist and that fractal features of LONs can contribute to explaining and predicting algorithm performance. The results show that the extent of multifractality and high fractal dimensions in the LON can contribute in this way when placed in regression models with other predictors. Features are also individually correlated with search performance, and visual analysis of LONs shows insight into this relationship.Output Status: Forthcoming/Available Onlin

    Anatomy of the Local Optima Level in Combinatorial Optimisation

    Get PDF
    Many situations in daily life represent complex combinatorial optimisation problems. These include issues such as efficient fuel consumption, nurse scheduling, or distribution of humanitarian aid. There are many algorithms that attempt to solve these problems but the ability to understand their likely performance on a given problem is still lacking. Fitness landscape analysis identifies some of the reasons why metaheuristic algorithms behave in a particular way. The Local Optima Network (LON) model, proposed in 2008, encodes local optima connectivity in fitness landscapes. In this approach, nodes are local optima and edges encode transitions between these optima. A LON provides a static image of the dynamics of algorithm-problem inter- play. Analysing these structures provides insights into the reactions between optimisation problems and metaheuristic search algorithms. This thesis proposes that analysis of the local optima space of combinatorial fitness landscapes encoded using a LON provides important information concerning potential search algorithm performance. It considers the question as to whether or not features of LONs can contribute to explaining or predicting the outcome of trying to optimise an associated combinatorial problem. Topological landscape features of LONs are proposed, analysed and compared. Benchmark and novel problem instances are studied; both types of problem are sampled and in some cases exhaustively-enumerated such that LONs can be extracted for analysis. Investigations into the nature and biases of LON construction algorithms are conducted and compared. Contributions include aligning fractal geometry to the study of LONs; proposals for novel ways to compute fractal dimension from these structures; comparing the power of different LON construction algorithms for explaining algorithm performances; and analysing the interplay between algorithmic operations and infeasible regions in the local optima space using LONs as a tool. Throughout the thesis, large scale structural patterns in fitness landscapes are shown to be strongly linked with metaheuristic algorithm performance. This includes arrangements of local optima funnel structures; spatial and geometric complexity in the LON (measured by their fractal dimensionality) and fitness levels in the space of local optima. These features are demonstrated to have explanatory or predictive ability with respect to algorithm performance for the underlying combinatorial problems. The results presented here indicate that large topological patterns in fitness landscapes are important during metaheuristic search algorithm design. In many cases they are incontrovertibly linked to the success of the algorithm. These results indicate that use of the suggested fitness landscape measures would be highly beneficial when considering the design of search algorithms for a given problem domain

    Fractal Analysis

    Get PDF
    Fractal analysis is becoming more and more common in all walks of life. This includes biomedical engineering, steganography and art. Writing one book on all these topics is a very difficult task. For this reason, this book covers only selected topics. Interested readers will find in this book the topics of image compression, groundwater quality, establishing the downscaling and spatio-temporal scale conversion models of NDVI, modelling and optimization of 3T fractional nonlinear generalized magneto-thermoelastic multi-material, algebraic fractals in steganography, strain induced microstructures in metals and much more. The book will definitely be of interest to scientists dealing with fractal analysis, as well as biomedical engineers or IT engineers. I encourage you to view individual chapters

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding
    corecore