266 research outputs found

    Analysis of normal human retinal vascular network architecture using multifractal geometry

    Get PDF
    AIM: To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina. METHODS: Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images, corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms, applying the standard box-counting method. Statistical analyses were performed using the GraphPad InStat software. RESULTS: The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions (Dq) for q=0, 1, 2, the width of the multifractal spectrum (Δα=αmax - αmin) and the spectrum arms’ heights difference (│Δf│) of the normal images were expressed as mean±standard deviation (SD): for segmented versions, D0=1.7014±0.0057; D1=1.6507±0.0058; D2=1.5772±0.0059; Δα=0.92441±0.0085; │Δf│= 0.1453±0.0051; for skeletonised versions, D0=1.6303±0.0051; D1=1.6012±0.0059; D2=1.5531± 0.0058; Δα=0.65032±0.0162; │Δf│= 0.0238±0.0161. The average of generalized dimensions (Dq) for q=0, 1, 2, the width of the multifractal spectrum (Δα) and the spectrum arms’ heights difference (│Δf│) of the segmented versions was slightly greater than the skeletonised versions. CONCLUSION: The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases

    Retinal vascular changes in Alzheimer’s dementia and mild cognitive impairment:a pilot study using ultra-widefield imaging

    Get PDF
    Purpose: Retinal microvascular abnormalities measured on retinal images are a potential source of prognostic biomarkers of vascular changes in the neurodegenerating brain. We assessed the presence of these abnormalities in Alzheimer’s dementia and mild cognitive impairment (MCI) using ultra-widefield (UWF) retinal imaging. Methods: UWF images from 103 participants (28 with Alzheimer’s dementia, 30 with MCI, and 45 with normal cognition) underwent analysis to quantify measures of retinal vascular branching complexity, width, and tortuosity. Results: Participants with Alzheimer’s dementia displayed increased vessel branching in the midperipheral retina and increased arteriolar thinning. Participants with MCI displayed increased rates of arteriolar and venular thinning and a trend for decreased vessel branching. Conclusions: Statistically significant differences in the retinal vasculature in peripheral regions of the retina were observed among the distinct cognitive stages. However, larger studies are required to establish the clinical importance of our findings. UWF imaging may be a promising modality to assess a larger view of the retinal vasculature to uncover retinal changes in Alzheimer’s disease. Translational Relevance: This pilot work reports an investigation into which retinal vasculature measurements may be useful surrogate measures of cognitive decline, as well as technical developments (e.g., measurement standardization), that are first required to establish their recommended use and translational potential

    Investigating Multimodal Diagnostic Eye Biomarkers of Cognitive Impairment by Measuring Vascular and Neurogenic Changes in the Retina

    Get PDF
    Previous studies have demonstrated that cognitive impairment (CI) is not limited to the brain but also affects the retina. In this pilot study, we investigated the correlation between the retinal vascular complexity and neurodegenerative changes in patients with CI using a low-cost multimodal approach. Quantification of the retinal structure and function were conducted for every subject (n = 69) using advanced retinal imaging, full-field electroretinogram (ERG) and visual performance exams. The retinal vascular parameters were calculated using the Singapore Institute Vessel Assessment software. The Montreal Cognitive Assessment was used to measure CI. Pearson product moment correlation was performed between variables. Of the 69 participants, 32 had CI (46%). We found significantly altered microvascular network in individuals with CI (larger venular-asymmetry factor: 0.7 ± 0.2) compared with controls (0.6 ± 0.2). The vascular fractal dimension was lower in individuals with CI (capacity, information and correlation dimensions: D0, D1, and D2 (mean ± SD): 1.57 ± 0.06; 1.56 ± 0.06; 1.55 ± 0.06; age 81 ± 6years) vs. controls (1.61 ± 0.03; 1.59 ± 0.03; 1.58 ± 0.03; age: 80 ± 7 years). Also, drusen-like regions in the peripheral retina along with pigment dispersion were noted in subjects with mild CI. Functional loss in color vision as well as smaller ERG amplitudes and larger peak times were observed in the subjects with CI. Pearson product moment correlation showed significant associations between the vascular parameters (artery-vein ratio, total length-diameter ratio, D0, D1, D2 and the implicit time (IT) of the flicker response but these associations were not significant in the partial correlations. This study illustrates that there are multimodal retinal markers that may be sensitive to CI decline, and adds to the evidence that there is a statistical trend pointing to the correlation between retinal neuronal dysfunction and microvasculature changes suggesting that retinal geometric vascular and functional parameters might be associated with physiological changes in the retina due to CI. We suspect our analysis of combined structural-functional parameters, instead of individual biomarkers, may provide a useful clinical marker of CI that could also provide increased sensitivity and specificity for the differential diagnosis of CI. However, because of our study sample was small, the full extent of clinical applicability of our approach is provocative and still to be determined

    Application of ImageJ in Optical Coherence Tomography Angiography (OCT-A): A Literature Review

    Get PDF
    Background. This study aimed to review the literature on the application of ImageJ in optical coherence tomography angiography (OCT-A) images. Methods. A general search was performed in PubMed, Google Scholar, and Scopus databases. The authors evaluated each of the selected articles in order to assess the implementation of ImageJ in OCT-A images. Results. ImageJ can aid in reducing artifacts, enhancing image quality to increase the accuracy of the process and analysis, processing and analyzing images, generating comparable parameters such as the parameters that assess perfusion of the layers (vessel density (VD), skeletonized density (SD), and vessel length density (VLD)) and the parameters that evaluate the structure of the layers (fractal dimension (FD), vessel density index (VDI), and lacunarity (LAC)), and the foveal avascular zone (FAZ) that are used widely in the retinal and choroidal studies), and establishing diagnostic criteria. It can help to save time when the dataset is huge with numerous plugins and options for image processing and analysis with reliable results. Diverse studies implemented distinct binarization and thresholding techniques, resulting in disparate outcomes and incomparable parameters. Uniformity in methodology is required to acquire comparable data from studies employing diverse processing and analysis techniques that yield varied outcomes. Conclusion. Researchers and professionals might benefit from using ImageJ because of how quickly and correctly it processes and analyzes images. It is highly adaptable and potent software, allowing users to evaluate images in a variety of ways. There exists a diverse range of methodologies for analyzing OCTA images through the utilization of ImageJ. However, it is imperative to establish a standardized strategy to ensure the reliability and consistency of the method for research purposes

    Early Detection of Microvascular Changes in Patients with Diabetes Mellitus without and with Diabetic Retinopathy: Comparison between Different Swept-Source OCT-A Instruments

    Get PDF
    Optical coherence tomography angiography (OCT-A) has recently improved the ability to detect subclinical and early clinically visible microvascular changes occurring in patients with diabetes mellitus (DM). The aim of the present study is to evaluate and compare early quantitative changes of macular perfusion parameters in patients with DM without DR and with mild nonproliferative DR (NPDR) evaluated by two different swept-source (SS) OCT-A instruments using two scan protocols (3 73 mm and 6 76 mm). One hundred eleven subjects/eyes were prospectively evaluated: 18 healthy controls (control group), 73 eyes with DM but no DR (no-DR group), and 20 eyes with mild NPDR (DR group). All quantitative analyses were performed using ImageJ and included vessel and perfusion density, area and circularity index of the FAZ, and vascular complexity parameters. The agreement between methods was assessed according to the method of Bland-Altman. A significant decrease in the majority of the considered parameters was found in the DR group versus the controls with both instruments. The results of Bland-Altman analysis showed the presence of a systemic bias between the two instruments with PLEX Elite providing higher values for the majority of the tested parameters when considering 6 76 mm angiocubes and a less definite difference in 3 73 mm angiocubes. In conclusion, this study documents early microvascular changes occurring in the macular region of patients at initial stages of DR, confirmed with both SS OCT-A instruments. The fact that early microvascular alterations could not be detected with one instrument does not necessarily mean that these alterations are not actually present, but this could be an intrinsic limitation of the device itself. Further, larger longitudinal studies are needed to better understand microvascular damage at very early stages of diabetic retinal disease and to define the strengths and weaknesses of different OCT-A devices
    • …
    corecore