1,256 research outputs found

    Some Applications of the Percolation Theory. Brief Review of the Century Beginning

    Full text link
    The review is a brief description of the state of problems in percolation theory and their numerous applications, which are analyzed on base of interesting papers published in the last 15-20 years. At the submitted papers are studied both the cluster system of the physical body and its impact on the object in general, and adequate mathematical tools for description of critical phenomena too. Of special interest are the data, first, the point of phase transition of certain of percolation system is not really a point, but it is a critical interval, and second, in vicinity of percolation threshold observed many different infinite clusters instead of one infinite cluster that appears in traditional consideration.Comment: arXiv admin note: text overlap with arXiv:1104.5376, arXiv:1205.0691 by other author

    Modelling fluctuations of financial time series: from cascade process to stochastic volatility model

    Full text link
    In this paper, we provide a simple, ``generic'' interpretation of multifractal scaling laws and multiplicative cascade process paradigms in terms of volatility correlations. We show that in this context 1/f power spectra, as observed recently by Bonanno et al., naturally emerge. We then propose a simple solvable ``stochastic volatility'' model for return fluctuations. This model is able to reproduce most of recent empirical findings concerning financial time series: no correlation between price variations, long-range volatility correlations and multifractal statistics. Moreover, its extension to a multivariate context, in order to model portfolio behavior, is very natural. Comparisons to real data and other models proposed elsewhere are provided.Comment: 21 pages, 5 figure

    Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash

    Get PDF
    The multifractal model of asset returns captures the volatility persistence of many financial time series. Its multifractal spectrum computed from wavelet modulus maxima lines provides the spectrum of irregularities in the distribution of market returns over time and thereby of the kind of uncertainty or randomness in a particular market. Changes in this multifractal spectrum display distinctive patterns around substantial market crashes or drawdowns. In other words, the kinds of singularities and the kinds of irregularity change in a distinct fashion in the periods immediately preceding and following major market drawdowns. This paper focuses on these identifiable multifractal spectral patterns surrounding the stock market crash of 1987. Although we are not able to find a uniquely identifiable irregularity pattern within the same market preceding different crashes at different times, we do find the same uniquely identifiable pattern in various stock markets experiencing the same crash at the same time. Moreover, our results suggest that all such crashes are preceded by a gradual increase in the weighted average of the values of the Lipschitz regularity exponents, under low dispersion of the multifractal spectrum. At a crash, this weighted average irregularity value drops to a much lower value, while the dispersion of the spectrum of Lipschitz exponents jumps up to a much higher level after the crash. Our most striking result, therefore, is that the multifractal spectra of stock market returns are not stationary. Also, while the stock market returns show a global Hurst exponent of slight persistence 0.5Financial Markets, Persistence, Multi-Fractal Spectral Analysis, Wavelets

    Multifractality without fine-tuning in a Floquet quasiperiodic chain

    Full text link
    Periodically driven, or Floquet, disordered quantum systems have generated many unexpected discoveries of late, such as the anomalous Floquet Anderson insulator and the discrete time crystal. Here, we report the emergence of an entire band of multifractal wavefunctions in a periodically driven chain of non-interacting particles subject to spatially quasiperiodic disorder. Remarkably, this multifractality is robust in that it does not require any fine-tuning of the model parameters, which sets it apart from the known multifractality of criticalcritical wavefunctions. The multifractality arises as the periodic drive hybridises the localised and delocalised sectors of the undriven spectrum. We account for this phenomenon in a simple random matrix based theory. Finally, we discuss dynamical signatures of the multifractal states, which should betray their presence in cold atom experiments. Such a simple yet robust realisation of multifractality could advance this so far elusive phenomenon towards applications, such as the proposed disorder-induced enhancement of a superfluid transition.Comment: 22 pages, 13 figures, SciPost submissio

    Acceleration and vortex filaments in turbulence

    Full text link
    We report recent results from a high resolution numerical study of fluid particles transported by a fully developed turbulent flow. Single particle trajectories were followed for a time range spanning more than three decades, from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover time. We present some results concerning acceleration statistics and the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure
    corecore