6 research outputs found

    Envelhecimento e rejuvenescimento de software: 20 anos (19952014) - panorama e desafios

    Get PDF
    Although software aging and rejuvenation is a young research held, in its first 20 years a lot of knowledge has been produced. Nowadays, important scientific journals and conferences include SAR-related topics in their scope of interest. This fast growing and wide range of dissemination venues pose a challenge to researchers to keep tracking of the new findings and trends in this area. In this work, we collected and analyzed SAR research data to detect trends, patterns, and thematic gaps, in order to provide a comprehensive view of this research held over its hrst 20 years. Adopted the systematic mapping approach to answer research questions such as: How the main topics investigated in SAR have evolved over time? Which are the most investigated aging effects? Which rejuvenation techniques and strategies are more frequently used?CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)Embora o envelhecimento e rejuvenescimento de software seja um campo de pesquisa novo, em seus primeiros 20 anos muito conhecimento foi produzido. Hoje em dia, revistas e conferências científicas importantes incluem temas relacionados a SAR no seu âmbito de interesse. Este crescimento rápido e a grande variedade de locais de disseminação representam um desafio para os pesquisadores para manter o acompanhamento das novas descobertas e tendências nesta área. Neste trabalho, foram coletados e analisados dados de pesquisa em SAR para detectar tendências, padrões e lacunas temáticas, a hm de proporcionar uma visão abrangente deste campo de pesquisa em seus primeiros 20 anos. Adotou-se a abordagem de mapeamento sistemático para responder a perguntas de pesquisa, tais como: Como os principais temas investigados em SAR têm evoluído ao longo do tempo? Quais são os efeitos do envelhecimento mais investigados? Quais técnicas e estratégias de rejuvenescimento são mais frequentemente usadas

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Multiformalism to Support Software Rejuvenation Modeling

    No full text
    The study of software aging and rejuvenation is based on models that conjugate the complexity of architectural models with the problem of time dependence of parameters. Exploiting the metaphors of common performance-oriented modeling formalisms (such as Petri nets or queuing networks) with the support of proper solution techniques can help modelers in approaching the analysis of complex software-based systems. This paper shows how SIMTHESys (a multiformalism modeling framework) can be used to approach the modeling problem by implementing a new user-defined modeling formalisms and the related fluid-based solution engine. © 2012 IEEE

    Multiformalism to Support Software Rejuvenation Modeling

    No full text
    The study of software aging and rejuvenation is based on models that conjugate the complexity of architectural models with the problem of time dependence of parameters. Exploiting the metaphors of common performance-oriented modeling formalisms (such as Petri nets or queuing networks) with the support of proper solution techniques can help modelers in approaching the analysis of complex software-based systems. This paper shows how SIMTHESys (a multiformalism modeling framework) can be used to approach the modeling problem by implementing a new user-defined modeling formalisms and the related fluid-based solution engine
    corecore