22 research outputs found

    Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS

    Get PDF
    Motivation: Epistasis, the presence of gene–gene interactions, has been hypothesized to be at the root of many common human diseases, but current genome-wide association studies largely ignore its role. Multifactor dimensionality reduction (MDR) is a powerful model-free method for detecting epistatic relationships between genes, but computational costs have made its application to genome-wide data difficult. Graphics processing units (GPUs), the hardware responsible for rendering computer games, are powerful parallel processors. Using GPUs to run MDR on a genome-wide dataset allows for statistically rigorous testing of epistasis

    Gene Ontology Analysis of Pairwise Genetic Associations in Two Genome-Wide Studies of Sporadic ALS

    Get PDF
    It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO)

    Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multifactorial diseases such as cancer and cardiovascular diseases are caused by the complex interplay between genes and environment. The detection of these interactions remains challenging due to computational limitations. Information theoretic approaches use computationally efficient directed search strategies and thus provide a feasible solution to this problem. However, the power of information theoretic methods for interaction analysis has not been systematically evaluated. In this work, we compare power and Type I error of an information-theoretic approach to existing interaction analysis methods.</p> <p>Methods</p> <p>The <it>k-</it>way interaction information (KWII) metric for identifying variable combinations involved in gene-gene interactions (GGI) was assessed using several simulated data sets under models of genetic heterogeneity driven by susceptibility increasing loci with varying allele frequency, penetrance values and heritability. The power and proportion of false positives of the KWII was compared to multifactor dimensionality reduction (MDR), restricted partitioning method (RPM) and logistic regression.</p> <p>Results</p> <p>The power of the KWII was considerably greater than MDR on all six simulation models examined. For a given disease prevalence at high values of heritability, the power of both RPM and KWII was greater than 95%. For models with low heritability and/or genetic heterogeneity, the power of the KWII was consistently greater than RPM; the improvements in power for the KWII over RPM ranged from 4.7% to 14.2% at for α = 0.001 in the three models at the lowest heritability values examined. KWII performed similar to logistic regression.</p> <p>Conclusions</p> <p>Information theoretic models are flexible and have excellent power to detect GGI under a variety of conditions that characterize complex diseases.</p

    Discovering Higher-order SNP Interactions in High-dimensional Genomic Data

    Get PDF
    In this thesis, a multifactor dimensionality reduction based method on associative classification is employed to identify higher-order SNP interactions for enhancing the understanding of the genetic architecture of complex diseases. Further, this thesis explored the application of deep learning techniques by providing new clues into the interaction analysis. The performance of the deep learning method is maximized by unifying deep neural networks with a random forest for achieving reliable interactions in the presence of noise

    High throughput analysis of epistasis in genome-wide association studies with BiForce

    Get PDF
    Motivation: Gene–gene interactions (epistasis) are thought to be important in shaping complex traits, but they have been under-explored in genome-wide association studies (GWAS) due to the computational challenge of enumerating billions of single nucleotide polymorphism (SNP) combinations. Fast screening tools are needed to make epistasis analysis routinely available in GWAS. Results: We present BiForce to support high-throughput analysis of epistasis in GWAS for either quantitative or binary disease (case–control) traits. BiForce achieves great computational efficiency by using memory efficient data structures, Boolean bitwise operations and multithreaded parallelization. It performs a full pair-wise genome scan to detect interactions involving SNPs with or without significant marginal effects using appropriate Bonferroni-corrected significance thresholds. We show that BiForce is more powerful and significantly faster than published tools for both binary and quantitative traits in a series of performance tests on simulated and real datasets. We demonstrate BiForce in analysing eight metabolic traits in a GWAS cohort (323 697 SNPs, >4500 individuals) and two disease traits in another (>340 000 SNPs, >1750 cases and 1500 controls) on a 32-node computing cluster. BiForce completed analyses of the eight metabolic traits within 1 day, identified nine epistatic pairs of SNPs in five metabolic traits and 18 SNP pairs in two disease traits. BiForce can make the analysis of epistasis a routine exercise in GWAS and thus improve our understanding of the role of epistasis in the genetic regulation of complex traits. Availability and implementation: The software is free and can be downloaded from http://bioinfo.utu.fi/BiForce/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Applied Computational Techniques on Schizophrenia Using Genetic Mutations

    Get PDF
    [Abstract] Schizophrenia is a complex disease, with both genetic and environmental influence. Machine learning techniques can be used to associate different genetic variations at different genes with a (schizophrenic or non-schizophrenic) phenotype. Several machine learning techniques were applied to schizophrenia data to obtain the results presented in this study. Considering these data, Quantitative Genotype – Disease Relationships (QDGRs) can be used for disease prediction. One of the best machine learning-based models obtained after this exhaustive comparative study was implemented online; this model is an artificial neural network (ANN). Thus, the tool offers the possibility to introduce Single Nucleotide Polymorphism (SNP) sequences in order to classify a patient with schizophrenia. Besides this comparative study, a method for variable selection, based on ANNs and evolutionary computation (EC), is also presented. This method uses half the number of variables as the original ANN and the variables obtained are among those found in other publications. In the future, QDGR models based on nucleic acid information could be expanded to other diseases.Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT-0366Xunta de Galicia; 10SIN105004PRInstituto de Salud Carlos III; RD07/0067/0005Xunta de Galicia; Ref. 2009/5

    Pathways of Distinction Analysis: A New Technique for Multi–SNP Analysis of GWAS Data

    Get PDF
    Genome-wide association studies (GWAS) have become increasingly common due to advances in technology and have permitted the identification of differences in single nucleotide polymorphism (SNP) alleles that are associated with diseases. However, while typical GWAS analysis techniques treat markers individually, complex diseases (cancers, diabetes, and Alzheimers, amongst others) are unlikely to have a single causative gene. Thus, there is a pressing need for multi–SNP analysis methods that can reveal system-level differences in cases and controls. Here, we present a novel multi–SNP GWAS analysis method called Pathways of Distinction Analysis (PoDA). The method uses GWAS data and known pathway–gene and gene–SNP associations to identify pathways that permit, ideally, the distinction of cases from controls. The technique is based upon the hypothesis that, if a pathway is related to disease risk, cases will appear more similar to other cases than to controls (or vice versa) for the SNPs associated with that pathway. By systematically applying the method to all pathways of potential interest, we can identify those for which the hypothesis holds true, i.e., pathways containing SNPs for which the samples exhibit greater within-class similarity than across classes. Importantly, PoDA improves on existing single–SNP and SNP–set enrichment analyses, in that it does not require the SNPs in a pathway to exhibit independent main effects. This permits PoDA to reveal pathways in which epistatic interactions drive risk. In this paper, we detail the PoDA method and apply it to two GWAS: one of breast cancer and the other of liver cancer. The results obtained strongly suggest that there exist pathway-wide genomic differences that contribute to disease susceptibility. PoDA thus provides an analytical tool that is complementary to existing techniques and has the power to enrich our understanding of disease genomics at the systems-level
    corecore