564 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe development of devices to electrically interact with the brain is a challenging task that could potentially restore motion to paralyzed patients and sight to those with profound blindness. Neural engineers have designed many types of microelectrode arrays (MEAs) with this challenge in mind. These MEAs can be implanted into brain tissue to both record neural signals and electrically stimulate neurons with high selectivity and spatial resolution. Implanted MEAs have allowed patients to control of a variety of prosthetic devices in clinical trials, but the longevity of such motor prostheses is limited to a few years. Performance decreases over time as MEAs lose the ability to record neuronal signals, preventing their widespread clinical use. Microstimulation via intracortical MEAs has also not achieved broad clinical implementation. While microstimulation for the restoration of vision is promising, human clinical trials are needed. Chronic in vivo functionality assays in model systems will provide key insight to facilitate such trials. There are three goals that may help address insufficient MEA longevity, as well as provide insight on microstimulation functionality. First, thorough characterizations of how performance decreases over time, both with and without stimulation, will be needed. Next, factors that affect the chronic performance of microstimulating MEAs must be further investigated. Finally, intervention strategies can be designed to mitigate these factors and improve long term MEA performance. This dissertation takes steps towards meeting these goals by means of three studies. First, the chronic performance of intracortically implanted recording and stimulating MEAs is examined. It is found that while performance of implanted MEAs in feline cortex is dynamic, catastrophic device failure does not occur with microstimulation. Next, a variety of factors that affect microstimulation studies are investigated. It is found that many factors, including device iv damage, anesthesia depth, the application of microstimulation, and the use of impedance as a reporter play a role in observations of performance variability. Finally, a promising intervention strategy, a carbon nanotube coating, is chronically tested in vivo, indicating that carbon nanotubes do not cause catastrophic device failure and may impart benefits to future generations of MEAs

    Response Dynamics of Entorhinal Cortex in Awake, Anesthetized, and Bulbotomized Rats. <i>Brain Research</i> <b>911</b>(2)

    Get PDF
    The generation of oscillatory activity may be crucial to brain function. The coordination of individual neurons into rhythmic and coherently active populations is thought to result from interactions between excitatory and inhibitory cells mediated by local feedback connections. By using extracellular recording wires and silicon microprobes to measure electrically evoked damped oscillatory responses at the level of neural populations in the entorhinal cortex, and by using current-source density analysis to determine the spatial pattern of evoked responses, we show that the propagation of activity through the cortical circuit and consequent oscillations in the local field potential are dependent upon background neural activity. Pharmacological manipulations as well as surgical disconnection of the olfactory bulb serve to quell the background excitatory input incident to entorhinal cortex, resulting in evoked responses without characteristic oscillations and showing no signs of polysynaptic feedback. Electrical stimulation at 200 Hz applied to the lateral olfactory tract provides a substitute for the normal background activity emanating from the bulb and enables the generation of oscillatory responses once again. We conclude that a nonzero background level of activity is necessary and sufficient to sustain normal oscillatory responses and polysynaptic transmission through the entorhinal cortex

    Laminar analysis of the slow wave activity in the somatosensory cortex of anesthetized rats.

    Get PDF
    Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of individual cortical layers to the SWA generation are still unclear. The anatomically correct laminar profiles of SWA were revealed under ketamine/xylazine anesthesia, with combined local field potential recordings, multiple-unit activity (MUA), current source density (CSD) and time-frequency analyses precisely co-registered with histology. The up-state related negative field potential wave showed the largest amplitude in layer IV, the CSD was largest in layers I and III, while MUA was maximal in layer V, suggesting spatially dissociated firing and synaptic/transmembrane processes in the rat somatosensory cortex. Up-state related firing could start in virtually any layers (III-VI) of the cortex, but were most frequently initiated in layer V. However, in a subset of experiments, layer IV was considerably active in initiating up-state related MUA even in the absence of somatosensory stimulation. Somatosensory stimulation further strengthened up-state initiation in layer IV. Our results confirm that cortical layer V firing may have a major contribution to the up-state generation of ketamine/xylazine-induced SWA, however, thalamic influence through the thalamorecipient layer IV can also play an initiating role, even in the absence of sensory stimulation. This article is protected by copyright. All rights reserved

    Doctor of Philosophy

    Get PDF
    dissertationThe Utah Electrode Array (UEA) is a brain-implanted microelectrode recording device that has shown promise to assist patients with motor-control disabilities. Unfortunately, the UEA suffers from a foreign body response (FBR) that results in device movement away from implantation target, encapsulation of devices in meningeal origin tissue, loss of cortical tissue, and persistent neuroinflammation in the brain. These issues affect device functionality, and thus biocompatibility, and hinder widespread implementation of this technology. This dissertation examines whether device anchoring or extracellular matrix (ECM)-based device coating strategies can influence the biocompatibility of chronically implanted UEAs in the rat cortex. Results show that unanchored UEAs have a reduced FBR in comparison to those anchored to the skull, but also suffer from device movement as a result of cortical tissue remodeling, likely attributable to implantation-associated injury. To address implantation-associated injury, ECM was explored as a surface adsorbed device coating and was shown to be both hemostatic and immunomodulatory with in vitro assays. An apparatus was developed to coat Avitene™, an FDA-approved neurosurgical hemostatic ECM, onto the complex surface geometry of the UEA. Compared to uncoated control devices in a chronic rat model, Avitene™ coated devices experienced an enhanced FBR characterized by larger lesion cavities, enhanced meningeal encapsulation, and increased neuroinflammation, attributed to a higher degree of proinflammatory macrophages found surrounding the device coating. These result imply that future ECM-based coatings should include immunomodulatory components that address device-adherent macrophage activation state. Critical improvements in device anchoring and modulation of the FBR are still necessary to improve the biocompatibility of the UEA. Reducing the prevalence of FBR-related device failure is a necessary step that will require further attention before patients can benefit from this technology

    Doctor of Philosophy

    Get PDF
    dissertationHigh-count microelectrode arrays implanted in peripheral nerves could restore motor function after spinal cord injury or sensory function after limb loss via electrical stimulation. The same device could also help restore volitional control to a prosthesis-using amputee, or sensation to a Spinal cord Injury (SCI) patient, via recordings from the still-viable peripheral nerves. The overall objective of these dissertations studies is to improve the usefulness of intrafascicular electrodes, such as the Utah Slanted Electrode Array (USEA), for neuroprosthetic devices for limb loss or spinal cord injury patients. Previous work in cat sciatic nerve has shown that stimulation through the USEA can remain viable for months after implant. However, stimulation parameters were not stable, and recordings were lost rapidly and were subject to strong contamination by myoelectrical activity from adjacent muscles. Recent research has shown that even when mobility is restored to a patient, either through prosthesis or functional electrical stimulation, difficulties in using the affected limbs arise from the lack of sensory input. In the absence of the usual proprioceptive and cutaneous inputs from the limb, planning and executing motions can be challenging and sometimes lead to the user's abandonment of prostheses. To begin to address this need, I examined the ability of USEAs in cat hindlimb nerves to activate primary sensory fibers by monitoring evoked potentials in somatosensory cortex via skull-screw electrodes. I iv also monitored evoked EMG responses, and determined that it is possible to recruit sensory or motor responses independently of one another. In the second study of this dissertation, I sought to improve the long-term stability of USEAs in the PNS by physically and electrically stabilizing and protecting the array. To demonstrate the efficacy of the stabilization and shielding technique, I examined the recording capabilities of USEA electrodes and their selectivity of muscle activation over the long term in cat sciatic nerve. In addition to long-term viability, clinically useful neuroprosthetic devices will have to be capable of interfacing with complex motor systems such as the human hand. To extend previous results of USEAs in cat hindlimb nerves and to examine selectivity when interfacing with a complex sensorimotor system, I characterized EMG and cortical somatosensory responses to acute USEA stimulation in monkey arm nerves. Then, to demonstrate the functional usefulness of stimulation through the USEA. I used multi-array, multi-electrode stimulation to generate a natural, coordinated grasp

    Neural Network Dynamics of Visual Processing in the Higher-Order Visual System

    Get PDF
    Vision is one of the most important human senses that facilitate rich interaction with the external environment. For example, optimal spatial localization and subsequent motor contact with a specific physical object amongst others requires a combination of visual attention, discrimination, and sensory-motor coordination. The mammalian brain has evolved to elegantly solve this problem of transforming visual input into an efficient motor output to interact with an object of interest. The frontal and parietal cortices are two higher-order (i.e. processes information beyond simple sensory transformations) brain areas that are intimately involved in assessing how an animal’s internal state or prior experiences should influence cognitive-behavioral output. It is well known that activity within each region and functional interactions between both regions are correlated with visual attention, decision-making, and memory performance. Therefore, it is not surprising that impairment in the fronto-parietal circuit is often observed in many psychiatric disorders. Network- and circuit-level fronto-parietal involvement in sensory-based behavior is well studied; however, comparatively less is known about how single neuron activity in each of these areas can give rise to such macroscopic activity. The goal of the studies in this dissertation is to address this gap in knowledge through simultaneous recordings of cellular and population activity during sensory processing and behavioral paradigms. Together, the combined narrative builds on several themes in neuroscience: variability of single cell function, population-level encoding of stimulus properties, and state and context-dependent neural dynamics.Doctor of Philosoph
    • …
    corecore