2,388 research outputs found

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    NASA Innovative Advanced Concepts (NIAC) Phase 1 Final Report: Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 km of surface of Venus, driven by the power of the wind

    Fiscal year 1973 scientific and technical reports, articles, papers, and presentations

    Get PDF
    Formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY73 are presented. Papers of MSFC contractors are also included

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    Stability Control of Electric Vehicles with In-wheel Motors

    Get PDF
    Recently, mostly due to global warming concerns and high oil prices, electric vehicles have attracted a great deal of interest as an elegant solution to environmental and energy problems. In addition to the fact that electric vehicles have no tailpipe emissions and are more efficient than internal combustion engine vehicles, they represent more versatile platforms on which to apply advanced motion control techniques, since motor torque and speed can be generated and controlled quickly and precisely. The chassis control systems developed today are distinguished by the way the individual subsystems work in order to provide vehicle stability and control. However, the optimum driving dynamics can only be achieved when the tire forces on all wheels and in all three directions can be influenced and controlled precisely. This level of control requires that the vehicle is equipped with various chassis control systems that are integrated and networked together. Drive-by-wire electric vehicles with in-wheel motors provide the ideal platform for developing the required control system in such a situation. The focus of this thesis is to develop effective control strategies to improve driving dynamics and safety based on the philosophy of individually monitoring and controlling the tire forces on each wheel. A two-passenger electric all-wheel-drive urban vehicle (AUTO21EV) with four direct-drive in-wheel motors and an active steering system is designed and developed in this work. Based on this platform, an advanced fuzzy slip control system, a genetic fuzzy yaw moment controller, an advanced torque vectoring controller, and a genetic fuzzy active steering controller are developed, and the performance and effectiveness of each is evaluated using some standard test maneuvers. Finally, these control systems are integrated with each other by taking advantage of the strengths of each chassis control system and by distributing the required control effort between the in-wheel motors and the active steering system. The performance and effectiveness of the integrated control approach is evaluated and compared to the individual stability control systems, again based on some predefined standard test maneuvers

    Design and validation of decision and control systems in automated driving

    Get PDF
    xxvi, 148 p.En la última década ha surgido una tendencia creciente hacia la automatización de los vehículos, generando un cambio significativo en la movilidad, que afectará profundamente el modo de vida de las personas, la logística de mercancías y otros sectores dependientes del transporte. En el desarrollo de la conducción automatizada en entornos estructurados, la seguridad y el confort, como parte de las nuevas funcionalidades de la conducción, aún no se describen de forma estandarizada. Dado que los métodos de prueba utilizan cada vez más las técnicas de simulación, los desarrollos existentes deben adaptarse a este proceso. Por ejemplo, dado que las tecnologías de seguimiento de trayectorias son habilitadores esenciales, se deben aplicar verificaciones exhaustivas en aplicaciones relacionadas como el control de movimiento del vehículo y la estimación de parámetros. Además, las tecnologías en el vehículo deben ser lo suficientemente robustas para cumplir con los requisitos de seguridad, mejorando la redundancia y respaldar una operación a prueba de fallos. Considerando las premisas mencionadas, esta Tesis Doctoral tiene como objetivo el diseño y la implementación de un marco para lograr Sistemas de Conducción Automatizados (ADS) considerando aspectos cruciales, como la ejecución en tiempo real, la robustez, el rango operativo y el ajuste sencillo de parámetros. Para desarrollar las aportaciones relacionadas con este trabajo, se lleva a cabo un estudio del estado del arte actual en tecnologías de alta automatización de conducción. Luego, se propone un método de dos pasos que aborda la validación de ambos modelos de vehículos de simulación y ADS. Se introducen nuevas formulaciones predictivas basadas en modelos para mejorar la seguridad y el confort en el proceso de seguimiento de trayectorias. Por último, se evalúan escenarios de mal funcionamiento para mejorar la seguridad en entornos urbanos, proponiendo una estrategia alternativa de estimación de posicionamiento para minimizar las condiciones de riesgo

    Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 kilometers of the surface of Venus, driven by the power of the wind. The Zephyr Venus Landsailer is a science mission concept for exploring the surface of Venus with a mobility and science capability roughly comparable to the Mars Exploration Rovers (MER) mission, but using the winds of the thick atmosphere of Venus for propulsion. It would explore the plains of Venus in the year 2025, near the Venera 10 landing site, where wind velocities in the range of 80 to 120 centimeters per second (cm/s) were measured by earlier Soviet landing missions. These winds are harnessed by a large wing/sail which would also carry the solar cells to generate power. At around 250 kilograms (kg), Zephyr would carry an 8 meter tall airfoil sail (12 square meters area), 25 kg of science equipment (mineralogy, grinder, and weather instruments) and return 2 gigabytes of science over a 30 day mission. Due to the extreme temperatures (450 degrees Centigrade) and pressures (90 bar) on Venus, Zephyr would have only basic control systems (based on high temperature silicon carbide (SiC)electronics) and actuators. Control would come from an orbiter which is in turn controlled from Earth. Due to the time delay from the Earth a robust control system would need to exist on the orbiter to keep Zephyr on course. Data return and control would be made using a 250 megahertz link with the orbiter with a maximum data rate of 2 kilobits per second. At the minimal wind speed required for mobility of 35 cm/s, the vehicle move at a slow but steady 4 cm/s by positioning the airfoil and use of one wheel that is steered for pointing control. Navigation commands from the orbiter will be based upon navigation cameras, simple accelerometers and stability sensors; Zephyr's stability is robust, using a wide wheel base along with controls to "feather" or "luff" the airfoil and apply brakes to stop the vehicle in the case of unexpected conditions. This would be the science gathering configuration. The vehicle itself would need to be made from titanium (Ti) as the structural material, with a corrosion-barrier overcoating due to extreme temperatures on the surface

    Design and validation of decision and control systems in automated driving

    Get PDF
    xxvi, 148 p.En la última década ha surgido una tendencia creciente hacia la automatización de los vehículos, generando un cambio significativo en la movilidad, que afectará profundamente el modo de vida de las personas, la logística de mercancías y otros sectores dependientes del transporte. En el desarrollo de la conducción automatizada en entornos estructurados, la seguridad y el confort, como parte de las nuevas funcionalidades de la conducción, aún no se describen de forma estandarizada. Dado que los métodos de prueba utilizan cada vez más las técnicas de simulación, los desarrollos existentes deben adaptarse a este proceso. Por ejemplo, dado que las tecnologías de seguimiento de trayectorias son habilitadores esenciales, se deben aplicar verificaciones exhaustivas en aplicaciones relacionadas como el control de movimiento del vehículo y la estimación de parámetros. Además, las tecnologías en el vehículo deben ser lo suficientemente robustas para cumplir con los requisitos de seguridad, mejorando la redundancia y respaldar una operación a prueba de fallos. Considerando las premisas mencionadas, esta Tesis Doctoral tiene como objetivo el diseño y la implementación de un marco para lograr Sistemas de Conducción Automatizados (ADS) considerando aspectos cruciales, como la ejecución en tiempo real, la robustez, el rango operativo y el ajuste sencillo de parámetros. Para desarrollar las aportaciones relacionadas con este trabajo, se lleva a cabo un estudio del estado del arte actual en tecnologías de alta automatización de conducción. Luego, se propone un método de dos pasos que aborda la validación de ambos modelos de vehículos de simulación y ADS. Se introducen nuevas formulaciones predictivas basadas en modelos para mejorar la seguridad y el confort en el proceso de seguimiento de trayectorias. Por último, se evalúan escenarios de mal funcionamiento para mejorar la seguridad en entornos urbanos, proponiendo una estrategia alternativa de estimación de posicionamiento para minimizar las condiciones de riesgo

    Enhancing roll stability and directional performance of articulated heavy vehicles based on anti-roll control and design optimization.

    Get PDF
    This research presents an investigation to actively improve the rollover stability of articulated heavy vehicles (AHVs) during high speed manoeuvres using anti-roll control systems. A 3-dimensional (3-D) linear yaw/roll model with 5 degrees of freedom is developed. Based on this model a linear quadratic regulator (LQR) controller is designed to improve the rollover stability of a tractor/semi-trailer combination. A design optimization method for AHVs using genetic algorithms (GAs) and multibody vehicle system models is also presented. AHVs have poor manoeuvrability when travelling at low speeds on local roads and city streets. On the other hand, these vehicles exhibit unstable motion modes at high speeds, including jack-knifing, trailer sway and rollover. From the design point of view, the low-speed manoeuvrability and high-speed stability have conflicting requirements on some design variables. The design method based on a GA and a multibody vehicle dynamic package, TruckSim, is proposed to coordinate this trade-off relationship. To test the effectiveness of the design method, a tractor/semi-trailer combination is optimized using the proposed method. It is demonstrated that the proposed design method can be used for identifying desired design variables and predict performance envelopes in the early design stages of AHVs
    corecore