15,947 research outputs found

    Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity

    Get PDF
    This paper introduces innovative SAR system concepts for the acquisition of high resolution radar images with wide swath coverage from spaceborne platforms. The new concepts rely on the combination of advanced multi-channel SAR front-end architectures with novel operational modes. The architectures differ regarding their implementation complexity and it is shown that even a low number of channels is already well suited to significantly improve the imaging performance and to overcome fundamental limitations inherent to classical SAR systems. The more advanced concepts employ a multidimensional encoding of the transmitted waveforms to further improve the performance and to enable a new class of hybrid SAR imaging modes that are well suited to satisfy hitherto incompatible user requirements for frequent monitoring and detailed mapping. Implementation specific issues will be discussed and examples demonstrate the potential of the new techniques for different remote sensing applications

    <i>H</i><sub>2</sub> and mixed <i>H</i><sub>2</sub>/<i>H</i><sub>∞</sub> Stabilization and Disturbance Attenuation for Differential Linear Repetitive Processes

    Get PDF
    Repetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H∞ settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation

    Control and Filtering for Discrete Linear Repetitive Processes with H infty and ell 2--ell infty Performance

    No full text
    Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations which increase in amplitude in the pass to pass direction and cannot be controlled by standard control laws. Here we give new results on the design of physically based control laws for the sub-class of so-called discrete linear repetitive processes which arise in applications areas such as iterative learning control. The main contribution is to show how control law design can be undertaken within the framework of a general robust filtering problem with guaranteed levels of performance. In particular, we develop algorithms for the design of an H? and 2\ell_{2}–\ell_{\infty} dynamic output feedback controller and filter which guarantees that the resulting controlled (filtering error) process, respectively, is stable along the pass and has prescribed disturbance attenuation performance as measured by HH_{\infty} and 2\ell_{2}\ell_{\infty} norms

    For the Jubilee of Vladimir Mikhailovich Chernov

    Get PDF
    On April 25, 2019, Vladimir Chernov celebrated his 70th birthday, Doctor of Physics and Mathematics, Chief Researcher at the Laboratory of Mathematical Methods of Image Processing of the Image Processing Systems Institute of the Russian Academy of Sciences (IPSI RAS), a branch of the Federal Science Research Center "Crystallography and Photonics RAS and part-Time Professor at the Department of Geoinformatics and Information Security of the Samara National Research University named after academician S.P. Korolev (Samara University). The article briefly describes the scientific and pedagogical achievements of the hero of the day. © Published under licence by IOP Publishing Ltd

    Guest editorial foreword to the special issue on intelligent computation for bioinformatics

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it

    Weighted universal image compression

    Get PDF
    We describe a general coding strategy leading to a family of universal image compression systems designed to give good performance in applications where the statistics of the source to be compressed are not available at design time or vary over time or space. The basic approach considered uses a two-stage structure in which the single source code of traditional image compression systems is replaced with a family of codes designed to cover a large class of possible sources. To illustrate this approach, we consider the optimal design and use of two-stage codes containing collections of vector quantizers (weighted universal vector quantization), bit allocations for JPEG-style coding (weighted universal bit allocation), and transform codes (weighted universal transform coding). Further, we demonstrate the benefits to be gained from the inclusion of perceptual distortion measures and optimal parsing. The strategy yields two-stage codes that significantly outperform their single-stage predecessors. On a sequence of medical images, weighted universal vector quantization outperforms entropy coded vector quantization by over 9 dB. On the same data sequence, weighted universal bit allocation outperforms a JPEG-style code by over 2.5 dB. On a collection of mixed test and image data, weighted universal transform coding outperforms a single, data-optimized transform code (which gives performance almost identical to that of JPEG) by over 6 dB
    corecore