2,648 research outputs found

    Cooperative quantum electrodynamical processes in an ellipsoidal cavity

    Full text link
    We investigate spontaneous photon emission and absorption processes of two two-level atoms trapped close to the focal points of an ellipsoidal cavity, thereby taking into account the full multimode scenario. In particular, we calculate the excitation probabilities of the atoms by describing the field modes semiclassically. Based on this approach, we express the excitation probabilities by a semiclassical photon path representation. Due to the special property of an ellipsoidal cavity of having two focal points, we are able to study interesting intermediate instances between well-known quantum-optical scenarios. Furthermore, the semiclassical photon path representation enables us to address the corresponding retardation effects and causality questions in a straightforward manner.Comment: 14 pages, 3 figures, Optics and its Application

    Uniform Approximation from Symbol Calculus on a Spherical Phase Space

    Full text link
    We use symbol correspondence and quantum normal form theory to develop a more general method for finding uniform asymptotic approximations. We then apply this method to derive a result we announced in an earlier paper, namely, the uniform approximation of the 6j6j-symbol in terms of the rotation matrices. The derivation is based on the Stratonovich-Weyl symbol correspondence between matrix operators and functions on a spherical phase space. The resulting approximation depends on a canonical, or area preserving, map between two pairs of intersecting level sets on the spherical phase space.Comment: 18 pages, 5 figure

    Quantum Theory of Reactive Scattering in Phase Space

    Get PDF
    We review recent results on quantum reactive scattering from a phase space perspective. The approach uses classical and quantum versions of normal form theory and the perspective of dynamical systems theory. Over the past ten years the classical normal form theory has provided a method for realizing the phase space structures that are responsible for determining reactions in high dimensional Hamiltonian systems. This has led to the understanding that a new (to reaction dynamics) type of phase space structure, a {\em normally hyperbolic invariant manifold} (or, NHIM) is the "anchor" on which the phase space structures governing reaction dynamics are built. The quantum normal form theory provides a method for quantizing these phase space structures through the use of the Weyl quantization procedure. We show that this approach provides a solution of the time-independent Schr\"odinger equation leading to a (local) S-matrix in a neighborhood of the saddle point governing the reaction. It follows easily that the quantization of the directional flux through the dividing surface with the properties noted above is a flux operator that can be expressed in a "closed form". Moreover, from the local S-matrix we easily obtain an expression for the cumulative reactio probability (CRP). Significantly, the expression for the CRP can be evaluated without the need to compute classical trajectories. The quantization of the NHIM is shown to lead to the activated complex, and the lifetimes of quantum states initialized on the NHIM correspond to the Gamov-Siegert resonances. We apply these results to the collinear nitrogen exchange reaction and a three degree-of-freedom system corresponding to an Eckart barrier coupled to two Morse oscillators.Comment: 59 pages, 13 figure
    corecore