15 research outputs found

    Analysis and Design of Authentication and Encryption Algorithms for Secure Cloud Systems

    Get PDF
    Along with the fast growth of networks and mobile devices, cloud computing has become one of the most attractive and effective technologies and business solutions nowadays. Increasing numbers of organizations and customers are migrating their businesses and data to the cloud due to the flexibility and cost-efficiency of cloud systems. Preventing unauthorized access of sensitive data in the cloud has been one of the biggest challenges when designing a secure cloud system, and it strongly relies on the chosen authentication and encryption algorithms for providing authenticity and confidentiality, respectively. This thesis investigates various aspects of authentication and encryption algorithms for securing cloud systems, including authenticated encryption modes of operation, block ciphers, password hashing algorithms, and password-less/two-factor authentication mechanisms. Improving Authenticated Encryption Modes. The Galois/Counter Mode (GCM) is an authenticated encryption mode of operation for block ciphers. It has been widely adopted by many network standards and protocols that protect the security of cloud communications, such as TLS v1.2, IEEE 802.1AE and IPsec. Iwata et al. recently found a flaw in GCM's original proofs for non-96-bit nonce cases, and then presented new security bounds for GCM. The new bounds imply that the success probabilities of adversaries for attacking GCM are much larger than the originally expected ones. We propose a simple change to repair GCM. When applied, it will improve the security bounds by a factor of about 2202^{20} while maintaining most of the original proofs. Analyzing Polynomial-Based Message Authentication Codes. We investigate attacks on polynomial-based message authentication code (MAC) schemes including the one adopted in GCM. We demonstrate that constructing successful forgeries of these MAC schemes does not necessarily require hash collisions. This discovery removes certain restrictions in the attacks previously proposed by Procter and Cid. Moreover, utilizing a special design of GCM for processing non-96-bit nonces, we turn these forgery attacks into birthday attacks, which will significantly increase their success probabilities. Therefore, by considering the birthday attacks and the security proof flaw found by Iwata et al., cloud system designers should avoid using GCM with non-96-bit nonces if they do not revise the design of GCM. Analyzing Block Ciphers. We propose a new framework for analyzing symmetric-key ciphers by guessing intermediate states to divide ciphers into small components. This framework is suitable for lightweight ciphers with simple key schedules and block sizes smaller than key lengths. Using this framework, we design new attacks on the block cipher family KATAN. These attacks can recover the master keys of 175-round KATAN32, 130-round KATAN48 and 112-round KATAN64 faster than exhaustive search, and thus reach many more rounds than the existing attacks. We also provide new attacks on 115-round KATAN32 and 100-round KATAN48 in order to demonstrate that this new kind of attack can be more time-efficient and memory-efficient than the existing ones. Designing Password Hashing Algorithms. Securely storing passwords and deriving cryptographic keys from passwords are also crucial for most secure cloud system designs. However, choices of well-studied password hashing algorithms are extremely limited, as their security requirements and design principles are different from common cryptographic primitives. We propose two practical password hashing algorithms, Pleco and Plectron. They are built upon well-understood cryptographic algorithms, and combine the advantages of symmetric-key and asymmetric-key primitives. By employing the Rabin cryptosystem, we prove that the one-wayness of Pleco is at least as strong as the hard problem of integer factorization. In addition, both password hashing algorithms are designed to be sequential memory-hard, in order to thwart large-scale password searching using parallel hardware, such as GPUs, FPGAs, and ASICs. Designing Password-less/Two-Factor Authentication Mechanisms. Motivated by a number of recent industry initiatives, we propose Loxin, an innovative solution for password-less authentication for cloud systems and web applications. Loxin aims to improve on passwords with respect to both usability and security. It utilizes push message services for mobile devices to initiate authentication transactions based on asymmetric-key cryptography, and enables users to access multiple services by using pre-owned identities, such as email addresses. In particular, the Loxin server cannot generate users' authentication credentials, thereby eliminating the potential risk of credential leakage if the Loxin server gets compromised. Furthermore, Loxin is fully compatible with existing password-based authentication systems, and thus can serve as a two-factor authentication mechanism

    On Boomerang Attacks on Quadratic Feistel Ciphers

    Get PDF
    The recent introduction of the Boomerang Connectivity Table (BCT) at Eurocrypt 2018 revived interest in boomerang cryptanalysis and in the need to correctly build boomerang distinguishers. Several important advances have been made on this matter, with in particular the study of the extension of the BCT theory to multiple rounds and to different types of ciphers. In this paper, we pursue these investigations by studying the specific case of quadratic Feistel ciphers, motivated by the need to look at two particularly lightweight ciphers, KATAN and Simon. Our analysis shows that their light round function leads to an extreme case, as a one-round boomerang can only have a probability of 0 or 1. We identify six papers presenting boomerang analyses of KATAN or Simon and all use the naive approach to compute the distinguisher’s probability. We are able to prove that several results are theoretically incorrect and we run experiments to check the probability of the others. Many do not have the claimed probability: it fails distinguishing in some cases, but we also identify instances where the experimental probability turns out to be better than the claimed one. To address this shortfall, we propose an SMT model taking into account the boomerang constraints. We present several experimentally-verified related-key distinguishers obtained with our new technique: on KATAN32 a 151-round boomerang and on Simon-32/64 a 17-round boomerang, a 19-round rotational-xor boomerang and a 15-round rotational-xor-differential boomerang. Furthermore, we extend our 19-round distinguisher into a 25-round rotational-xor rectangle attack on Simon-32/64. To the best of our knowledge this attack reaches one more round than previously published results

    ブロック暗号に対する中間一致攻撃の計算量削減に関する研究

    Get PDF

    Secure high level communication protocol for CAN bus

    Get PDF
    The Controller Area Network (CAN bus) is a bus based on differential signalling originally developed for automotiv industry. The bus was later standardized under ISO 11898 and the standard describes data link layer as well as physica signalling. CAN bus allows precise settings of bus timing and sampling points, which makes it usable for varying range and baudrates. It also has a number of properties such as: message acknowledgement, collision avoidance, messag filtering and automatic retransmit of faulty messages. These properties make it suitable for many applications Furthermore, the bus is also well supported on microcontrollers and can even be found on larger SoCs. This makes th CAN bus ideal for microcontroller networks in buildings Unfortunately, the CAN protocol itself has no support for node authentication and message encryption so thes requirements has to be solved on higher layer. We present a high-level protocol for CAN bus that supports authenticatio and encryption and therefore allows usage of CAN bus in security dependent systems such as an access managemen system or in industrial automation

    Cryptanalysis of PRINCE with Minimal Data

    Get PDF
    We investigate two attacks on the PRINCE block cipher in the most realistic scenario, when the attacker only has a minimal amount of known plaintext available. The first attack is called Accelerated Exhaustive Search, and is able to recover the key for up to the full 12-round PRINCE with a complexity slightly lower than the security claim given by the designers. The second attack is a meet-in-the-middle attack, where we show how to successfully attack 8- and 10-round PRINCE with only two known plaintext/ciphertext pairs. Both attacks take advantage of the fact that the two middle rounds in PRINCE are unkeyed, so guessing the state before the first middle round gives the state after the second round practically for free. These attacks are the fastest until now in the known plaintext scenario for the 8 and 10 reduced-round versions and the full 12-round of PRINCE

    Symmetric block ciphers with a block length of 32 bit

    Get PDF
    Subject of the thesis at hand is the analysis of symmetric block ciphers with a block length of 32 bit. It is meant to give a comprising overview over the topic of 32 bit block ciphers. The topic is divided in the examination of three questions. It contains a list of state of the art block ciphers with a block length of 32 bit. The block ciphers are being described, focussing on the encryption function. An SPN-based cipher with 32 bit block length is being proposed by rescaling the AES cipher. The 32 bit block length results in certain security issues. These so called risk factors are analysed and mitigating measures are proposed. The result of the thesis is, that 32 bit block ciphers can be implemented in a secure manner. The use of 32 bit ciphers should be limited to specific use-cases and with a profound risk analysis, to determine the protection class of the data to be encrypted

    RoadRunneR: A Small And Fast Bitslice Block Cipher For Low Cost 8-bit Processors

    Get PDF
    Designing block ciphers targeting resource constrained 8-bit CPUs is a challenging problem. There are many recent lightweight ciphers designed for better performance in hardware. On the other hand, most software efficient lightweight ciphers either lack a security proof or have a low security margin. To fill the gap, we present RoadRunneR which is an efficient block cipher in 8-bit software, and its security is provable against differential and linear attacks. RoadRunneR has lowest code size in Atmel’s ATtiny45, except NSA’s design SPECK, which has no security proof. Moreover, we propose a new metric for the fair comparison of block ciphers. This metric, called ST/A, is the first metric to use key length as a parameter to rank ciphers of different key length in a fair way. By using ST/A and other metrics in the literature, we show that RoadRunneR is competitive among existing ciphers on ATtiny45
    corecore