74 research outputs found

    Distributed Functional Scalar Quantization Simplified

    Full text link
    Distributed functional scalar quantization (DFSQ) theory provides optimality conditions and predicts performance of data acquisition systems in which a computation on acquired data is desired. We address two limitations of previous works: prohibitively expensive decoder design and a restriction to sources with bounded distributions. We rigorously show that a much simpler decoder has equivalent asymptotic performance as the conditional expectation estimator previously explored, thus reducing decoder design complexity. The simpler decoder has the feature of decoupled communication and computation blocks. Moreover, we extend the DFSQ framework with the simpler decoder to acquire sources with infinite-support distributions such as Gaussian or exponential distributions. Finally, through simulation results we demonstrate that performance at moderate coding rates is well predicted by the asymptotic analysis, and we give new insight on the rate of convergence

    Distributed Scalar Quantization for Computing: High-Resolution Analysis and Extensions

    Get PDF
    Communication of quantized information is frequently followed by a computation. We consider situations of \emph{distributed functional scalar quantization}: distributed scalar quantization of (possibly correlated) sources followed by centralized computation of a function. Under smoothness conditions on the sources and function, companding scalar quantizer designs are developed to minimize mean-squared error (MSE) of the computed function as the quantizer resolution is allowed to grow. Striking improvements over quantizers designed without consideration of the function are possible and are larger in the entropy-constrained setting than in the fixed-rate setting. As extensions to the basic analysis, we characterize a large class of functions for which regular quantization suffices, consider certain functions for which asymptotic optimality is achieved without arbitrarily fine quantization, and allow limited collaboration between source encoders. In the entropy-constrained setting, a single bit per sample communicated between encoders can have an arbitrarily-large effect on functional distortion. In contrast, such communication has very little effect in the fixed-rate setting.Comment: 36 pages, 10 figure

    Entropy Density and Mismatch in High-Rate Scalar Quantization with Rényi Entropy Constraint

    Get PDF
    Properties of scalar quantization with rrth power distortion and constrained R\'enyi entropy of order α∈(0,1)\alpha\in (0,1) are investigated. For an asymptotically (high-rate) optimal sequence of quantizers, the contribution to the R\'enyi entropy due to source values in a fixed interval is identified in terms of the "entropy density" of the quantizer sequence. This extends results related to the well-known point density concept in optimal fixed-rate quantization. A dual of the entropy density result quantifies the distortion contribution of a given interval to the overall distortion. The distortion loss resulting from a mismatch of source densities in the design of an asymptotically optimal sequence of quantizers is also determined. This extends Bucklew's fixed-rate (α=0\alpha=0) and Gray \emph{et al.}'s variable-rate (α=1\alpha=1)mismatch results to general values of the entropy order parameter $\alpha

    High-Resolution Scalar Quantization with Rényi Entropy Constraint

    Get PDF
    We consider optimal scalar quantization with rrth power distortion and constrained R\'enyi entropy of order α\alpha. For sources with absolutely continuous distributions the high rate asymptotics of the quantizer distortion has long been known for α=0\alpha=0 (fixed-rate quantization) and α=1\alpha=1 (entropy-constrained quantization). These results have recently been extended to quantization with R\'enyi entropy constraint of order α≥r+1\alpha \ge r+1. Here we consider the more challenging case α∈[−∞,0)∪(0,1)\alpha\in [-\infty,0)\cup (0,1) and for a large class of absolutely continuous source distributions we determine the sharp asymptotics of the optimal quantization distortion. The achievability proof is based on finding (asymptotically) optimal quantizers via the companding approach, and is thus constructive

    Quantization in acquisition and computation networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 151-165).In modern systems, it is often desirable to extract relevant information from large amounts of data collected at different spatial locations. Applications include sensor networks, wearable health-monitoring devices and a variety of other systems for inference. Several existing source coding techniques, such as Slepian-Wolf and Wyner-Ziv coding, achieve asymptotic compression optimality in distributed systems. However, these techniques are rarely used in sensor networks because of decoding complexity and prohibitively long code length. Moreover, the fundamental limits that arise from existing techniques are intractable to describe for a complicated network topology or when the objective of the system is to perform some computation on the data rather than to reproduce the data. This thesis bridges the technological gap between the needs of real-world systems and the optimistic bounds derived from asymptotic analysis. Specifically, we characterize fundamental trade-offs when the desired computation is incorporated into the compression design and the code length is one. To obtain both performance guarantees and achievable schemes, we use high-resolution quantization theory, which is complementary to the Shannon-theoretic analyses previously used to study distributed systems. We account for varied network topologies, such as those where sensors are allowed to collaborate or the communication links are heterogeneous. In these settings, a small amount of intersensor communication can provide a significant improvement in compression performance. As a result, this work suggests new compression principles and network design for modern distributed systems. Although the ideas in the thesis are motivated by current and future sensor network implementations, the framework applies to a wide range of signal processing questions. We draw connections between the fidelity criteria studied in the thesis and distortion measures used in perceptual coding. As a consequence, we determine the optimal quantizer for expected relative error (ERE), a measure that is widely useful but is often neglected in the source coding community. We further demonstrate that applying the ERE criterion to psychophysical models can explain the Weber-Fechner law, a longstanding hypothesis of how humans perceive the external world. Our results are consistent with the hypothesis that human perception is Bayesian optimal for information acquisition conditioned on limited cognitive resources, thereby supporting the notion that the brain is efficient at acquisition and adaptation.by John Z. Sun.Ph.D

    Functional quantization

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 119-121).Data is rarely obtained for its own sake; oftentimes, it is a function of the data that we care about. Traditional data compression and quantization techniques, designed to recreate or approximate the data itself, gloss over this point. Are performance gains possible if source coding accounts for the user's function? How about when the encoders cannot themselves compute the function? We introduce the notion of functional quantization and use the tools of high-resolution analysis to get to the bottom of this question. Specifically, we consider real-valued raw data Xn/1 and scalar quantization of each component Xi of this data. First, under the constraints of fixed-rate quantization and variable-rate quantization, we obtain asymptotically optimal quantizer point densities and bit allocations. Introducing the notions of functional typicality and functional entropy, we then obtain asymptotically optimal block quantization schemes for each component. Next, we address the issue of non-monotonic functions by developing a model for high-resolution non-regular quantization. When these results are applied to several examples we observe striking improvements in performance.Finally, we answer three questions by means of the functional quantization framework: (1) Is there any benefit to allowing encoders to communicate with one another? (2) If transform coding is to be performed, how does a functional distortion measure influence the optimal transform? (3) What is the rate loss associated with a suboptimal quantizer design? In the process, we demonstrate how functional quantization can be a useful and intuitive alternative to more general information-theoretic techniques.by Vinith Misra.M.Eng

    Real-Time Perceptual Moving-Horizon Multiple-Description Audio Coding

    Get PDF
    A novel scheme for perceptual coding of audio for robust and real-time communication is designed and analyzed. As an alternative to PCM, DPCM, and more general noise-shaping converters, we propose to use psychoacoustically optimized noise-shaping quantizers based on the moving-horizon principle. In moving-horizon quantization, a few samples look-ahead is allowed at the encoder, which makes it possible to better shape the quantization noise and thereby reduce the resulting distortion over what is possible with conventional noise-shaping techniques. It is first shown that significant gains over linear PCM can be obtained without introducing a delay and without requiring postprocessing at the decoder, i.e., the encoded samples can be stored as, e.g., 16-bit linear PCM on CD-ROMs, and played out on standards-compliant CD players. We then show that multiple-description coding can be combined with moving-horizon quantization in order to combat possible erasures on the wireless link without introducing additional delays

    Predictive multiple-scale lattice VQ for LSF quantization

    Full text link
    • …
    corecore