680 research outputs found

    Accurate and automatic NOAA-AVHRR image navigation using a global contour matching approach

    Get PDF
    The problem of precise and automatic AVHRR image navigation is tractable in theory, but has proved to be somewhat difficult in practice. The authors' work has been motivated by the need for a fully automatic and operational navigation system capable of geo-referencing NOAA-AVHRR images with high accuracy and without operator supervision. The proposed method is based on the simultaneous use of an orbital model and a contour matching approach. This last process, relying on an affine transformation model, is used to correct the errors caused by inaccuracies in orbit modeling, nonzero value for the spacecraft's roll, pitch and yaw, errors due to inaccuracies in the satellite positioning and failures in the satellite internal clock. The automatic global contour matching process is summarized as follows: i) Estimation of the gradient energy map (edges) in the sensed image and detection of the cloudless (reliable) areas in this map. ii) Initialization of the affine model parameters by minimizing the Euclidean distance between the reference and sensed images objects. iii) Simultaneous optimization of all reference image contours on the sensed image by energy minimization in the domain of the global transformation parameters. The process is iterated in a hierarchical way, reducing the parameter searching space at each iteration. The proposed image navigation algorithm has proved to be capable of geo-referencing a satellite image within 1 pixel.Peer ReviewedPostprint (published version

    Study to assess the importance of errors introduced by applying NOAA 6 and NOAA 7 AVHRR data as an estimator of vegetative vigor: Feasibility study of data normalization

    Get PDF
    The use of NOAA AVHRR data to map and monitor vegetation types and conditions in near real-time can be enhanced by using a portion of each GAC image that is larger than the central 25% now considered. Enlargement of the cloud free image data set can permit development of a series of algorithms for correcting imagery for ground reflectance and for atmospheric scattering anisotropy within certain accuracy limits. Empirical correction algorithms used to normalize digital radiance or VIN data must contain factors for growth stage and for instrument spectral response. While it is not possible to correct for random fluctuations in target radiance, it is possible to estimate the necessary radiance difference between targets in order to provide target discrimination and quantification within predetermined limits of accuracy. A major difficulty lies in the lack of documentation of preprocessing algorithms used on AVHRR digital data

    Agricultural Monitoring in Regional Scale Using Clustering on Satellite Image Time Series

    Get PDF
    The remote sensing images are more accessible nowadays and there are proper technologies to receive, distribute, manipulate and process long satellite image time series that can be used to improve traditional methods for harvest monitoring and forecasting. The potential of the satellite multi-temporal images to support research of agricultural monitoring has increased according to improvements in technological development, especially in analysis of large volume of data available for knowledge discovery. In Brazil, sugarcane is cultivated on extensive fields and is the main agriculture crop used to produce ethanol. The main objective of this chapter is to monitor the sugarcane crop by clustering analysis with multi-temporal satellite images having low spatial resolution. A large database of this kind of image and specific software were used to perform the image pre-processing phase, extract time series, apply clustering method and enable the data visualization on several steps during the whole analysis process. According to the analysis done, our methodology allows to identify land areas with similar development patterns, also considering different growing seasons for the crops, covering monthly and annual periods. Results confirm that satellite images of low spatial resolution can indeed be satisfactorily used in agricultural crop monitoring in regional scale

    Integrated basin modeling

    Get PDF
    Simulation models / Irrigation management / Water balance / Groundwater / River basins / Hydrology / Flow / Evapotranspiration / Precipitation / Soils / Turkey / Gediz Basin

    Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    Get PDF
    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options

    High Performance Computing Applications in Remote Sensing Studies for Land Cover Dynamics

    Get PDF
    Global and regional land cover studies require the ability to apply complex models on selected subsets of large amounts of multi-sensor and multi-temporal data sets that have been derived from raw instrument measurements using widely accepted pre-processing algorithms. The computational and storage requirements of most such studies far exceed what is possible on a single workstation environment. We have been pursuing a new approach that couples scalable and open distributed heterogeneous hardware with the development of high performance software for processing, indexing, and organizing remotely sensed data. Hierarchical data management tools are used to ingest raw data, create metadata, and organize the archived data so as to automatically achieve computational load balancing among the available nodes and minimize I/O overheads. We illustrate our approach with four specific examples. The first is the development of the first fast operational scheme for the atmospheric correction of Landsat TM scenes, while the second example focuses on image segmentation using a novel hierarchical connected components algorithm. Retrieval of global BRDF (Bidirectional Reflectance Distribution Function) in the red and near infrared wavelengths using four years (1983 to 1986) of Pathfinder AVHRR Land (PAL) data set is the focus of our third example. The fourth example is the development of a hierarchical data organization scheme that allows on-demand processing and retrieval of regional and global AVHRR data sets. Our results show that substantial improvements in computational times can be achieved by using the high performance computing technology
    corecore