650 research outputs found

    Multidimensional sparse recovery for MIMO channel parameter estimation

    Get PDF
    Multipath propagation is a common phenomenon in wireless communication. Knowledge of propagation path parameters such as complex channel gain, propagation delay or angle-of-arrival provides valuable information on the user position and facilitates channel response estimation. A major challenge in channel parameter estimation lies in its multidimensional nature, which leads to large-scale estimation problems which are difficult to solve. Current approaches of sparse recovery for multidimensional parameter estimation aim at simultaneously estimating all channel parameters by solving one large-scale estimation problem. In contrast to that we propose a sparse recovery method which relies on decomposing the multidimensional problem into successive one-dimensional parameter estimation problems, which are much easier to solve and less sensitive to off-grid effects, while providing proper parameter pairing. Our proposed decomposition relies on convex optimization in terms of nuclear norm minimization and we present an efficient implementation in terms of the recently developed STELA algorithm

    Deep Signal Recovery with One-Bit Quantization

    Full text link
    Machine learning, and more specifically deep learning, have shown remarkable performance in sensing, communications, and inference. In this paper, we consider the application of the deep unfolding technique in the problem of signal reconstruction from its one-bit noisy measurements. Namely, we propose a model-based machine learning method and unfold the iterations of an inference optimization algorithm into the layers of a deep neural network for one-bit signal recovery. The resulting network, which we refer to as DeepRec, can efficiently handle the recovery of high-dimensional signals from acquired one-bit noisy measurements. The proposed method results in an improvement in accuracy and computational efficiency with respect to the original framework as shown through numerical analysis.Comment: This paper has been submitted to the 44th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2019
    • …
    corecore