578 research outputs found

    improving query performance using distributed computing

    Get PDF
    Data warehouses are used to store large amounts of data. This data is often used for On-Line Analytical Processing (OLAP) where short response times are essential for on-line decision support. One of the most important requirements of a data warehouse server is the query performance. The principal aspect from the user perspective is how quickly the server processes a given query: “the data warehouse must be fast”. The main focus of our research is finding adequate solutions to improve query response time of typical OLAP queries and improve scalability using a distributed computation environment that takes advantage of characteristics specific to the OLAP context. Our proposal provides very good performance and scalability even on huge data warehouses

    Physical Modeling of Data Warehouses Using UML Component and Deployment Diagrams: Design and Implementation Issues

    Get PDF
    Several approaches have been proposed to model different aspects of a Data Warehouse (DW) during recent years, such as the modeling of a DW at the conceptual and logical level, the design of the ETL (Extraction, Transformation, Loading) processes, the derivation of the DW models from the enterprise data models, and customization of a DW schema. At the end of the design, a DW has to be deployed in a database environment, requiring many decisions of a physical nature. However, few efforts have been dedicated to the modeling of the physical design of a DW from the early stages of a DW project. In this article, we argue that some physical decision can be taken from gathering main user requirements. In this paper, we present physical modeling techniques for DWs using the component diagrams and deployment diagrams of the Unified Modeling Language (UML). Our approach allows the designer to anticipate important physical design decisions that may reduce the overall development time of a DW such as replicating dimension tables, vertical and horizontal partitioning of a fact table, and the use of particular servers for certain ETL processes. Moreover, our approach allows the designer to cover all main design phases of DWs, from the conceptual modeling phase to the final implementation. To illustrate our techniques, we show a case study that is implemented on top of a commercial DW management server.This work has been partially supported by the METASIGN project (TIN2004-00779) from the Spanish Ministry of Education and Science

    Applying the UML and the Unified Process to the Design of Data Warehouses

    Get PDF
    The design, development and deployment of a data warehouse (DW) is a complex, time consuming and prone to fail task. This is mainly due to the different aspects taking part in a DW architecture such as data sources, processes responsible for Extracting, Transforming and Loading (ETL) data into the DW, the modeling of the DW itself, specifying data marts from the data warehouse or designing end user tools. In the last years, different models, methods and techniques have been proposed to provide partial solutions to cover the different aspects of a data warehouse. Nevertheless, none of these proposals addresses the whole development process of a data warehouse in an integrated and coherent manner providing the same notation for the modeling of the different parts of a DW. In this paper, we propose a data warehouse development method, based on the Unified Modeling Language (UML) and the Unified Process (UP), which addresses the design and development of both the data warehouse back-stage and front-end. We use the extension mechanisms (stereotypes, tagged values and constraints) provided by the UML and we properly extend it in order to accurately model the different parts of a data warehouse (such as the modeling of the data sources, ETL processes or the modeling of the DW itself) by using the same notation. To the best of our knowledge, our proposal provides a seamless method for developing data warehouses. Finally, we apply our approach to a case study to show its benefit.This work has been partially supported by the METASIGN project (TIN2004-OO779) from the Spanish Ministry of Education and Science, by the DADASMECA project (GV05/220) from the Valencia Government, and by the DADS (PBC-05-QI 2-2) project from the Regional Science arid Technology Ministry of CastiIla-La Mancha (Spain)

    Data Warehouse Design and Management: Theory and Practice

    Get PDF
    The need to store data and information permanently, for their reuse in later stages, is a very relevant problem in the modern world and now affects a large number of people and economic agents. The storage and subsequent use of data can indeed be a valuable source for decision making or to increase commercial activity. The next step to data storage is the efficient and effective use of information, particularly through the Business Intelligence, at whose base is just the implementation of a Data Warehouse. In the present paper we will analyze Data Warehouses with their theoretical models, and illustrate a practical implementation in a specific case study on a pharmaceutical distribution companyData warehouse, database, data model.

    A Strategy for Reducing I/O and Improving Query Processing Time in an Oracle Data Warehouse Environment

    Get PDF
    In the current information age as the saying goes, time is money. For the modern information worker, decisions must often be made quickly. Every extra minute spent waiting for critical data could mean the difference between financial gain and financial ruin. Despite the importance of timely data retrieval, many organizations lack even a basic strategy for improving the performance of their data warehouse based reporting systems. This project explores the idea that a strategy making use of three database performance improvement techniques can reduce I/O (input/output operations) and improve query processing time in an information system designed for reporting. To demonstrate that these performance improvement goals can be achieved, queries were run on ordinary tables and then on tables utilizing the performance improvement techniques. The I/O statistics and processing times for the queries were compared to measure the amount of performance improvement. The measurements were also used to explain how these techniques may be more or less effective under certain circumstances, such as when a particular type of query is run. The collected I/O and time based measurements showed a varying degree of improvement for each technique based on the query used. A need to match the types of queries commonly run on the system to the performance improvement technique being implemented was found to be an important consideration. The results indicated that in a reporting environment these performance improvement techniques have the potential to reduce I/O and improve query performance

    Business Intelligence for Small and Middle-Sized Entreprises

    Full text link
    Data warehouses are the core of decision support sys- tems, which nowadays are used by all kind of enter- prises in the entire world. Although many studies have been conducted on the need of decision support systems (DSSs) for small businesses, most of them adopt ex- isting solutions and approaches, which are appropriate for large-scaled enterprises, but are inadequate for small and middle-sized enterprises. Small enterprises require cheap, lightweight architec- tures and tools (hardware and software) providing on- line data analysis. In order to ensure these features, we review web-based business intelligence approaches. For real-time analysis, the traditional OLAP architecture is cumbersome and storage-costly; therefore, we also re- view in-memory processing. Consequently, this paper discusses the existing approa- ches and tools working in main memory and/or with web interfaces (including freeware tools), relevant for small and middle-sized enterprises in decision making

    Integration of Data Mining and Data Warehousing: a practical methodology

    Get PDF
    The ever growing repository of data in all fields poses new challenges to the modern analytical systems. Real-world datasets, with mixed numeric and nominal variables, are difficult to analyze and require effective visual exploration that conveys semantic relationships of data. Traditional data mining techniques such as clustering clusters only the numeric data. Little research has been carried out in tackling the problem of clustering high cardinality nominal variables to get better insight of underlying dataset. Several works in the literature proved the likelihood of integrating data mining with warehousing to discover knowledge from data. For the seamless integration, the mined data has to be modeled in form of a data warehouse schema. Schema generation process is complex manual task and requires domain and warehousing familiarity. Automated techniques are required to generate warehouse schema to overcome the existing dependencies. To fulfill the growing analytical needs and to overcome the existing limitations, we propose a novel methodology in this paper that permits efficient analysis of mixed numeric and nominal data, effective visual data exploration, automatic warehouse schema generation and integration of data mining and warehousing. The proposed methodology is evaluated by performing case study on real-world data set. Results show that multidimensional analysis can be performed in an easier and flexible way to discover meaningful knowledge from large datasets

    Data Warehousing and OLAP in a Cluster Computer Environment

    Get PDF

    NOSQL design for analytical workloads: Variability matters

    Get PDF
    Big Data has recently gained popularity and has strongly questioned relational databases as universal storage systems, especially in the presence of analytical workloads. As result, co-relational alternatives, commonly known as NOSQL (Not Only SQL) databases, are extensively used for Big Data. As the primary focus of NOSQL is on performance, NOSQL databases are directly designed at the physical level, and consequently the resulting schema is tailored to the dataset and access patterns of the problem in hand. However, we believe that NOSQL design can also benefit from traditional design approaches. In this paper we present a method to design databases for analytical workloads. Starting from the conceptual model and adopting the classical 3-phase design used for relational databases, we propose a novel design method considering the new features brought by NOSQL and encompassing relational and co-relational design altogether.Peer ReviewedPostprint (author's final draft
    corecore