250 research outputs found

    Searching for non-Gaussianity in the VSA data

    Full text link
    We have tested Very Small Array (VSA) observations of three regions of sky for the presence of non-Gaussianity, using high-order cumulants, Minkowski functionals, a wavelet-based test and a Bayesian joint power spectrum/non-Gaussianity analysis. We find the data from two regions to be consistent with Gaussianity. In the third region, we obtain a 96.7% detection of non-Gaussianity using the wavelet test. We perform simulations to characterise the tests, and conclude that this is consistent with expected residual point source contamination. There is therefore no evidence that this detection is of cosmological origin. Our simulations show that the tests would be sensitive to any residual point sources above the data's source subtraction level of 20 mJy. The tests are also sensitive to cosmic string networks at an rms fluctuation level of 105μK105 \mu K (i.e. equivalent to the best-fit observed value). They are not sensitive to string-induced fluctuations if an equal rms of Gaussian CDM fluctuations is added, thereby reducing the fluctuations due to the strings network to 74μK74 \mu K rms . We especially highlight the usefulness of non-Gaussianity testing in eliminating systematic effects from our data.Comment: Minor corrections; accepted for publication to MNRA

    Integral correlation measures for multiparticle physics

    Full text link
    We report on a considerable improvement in the technique of measuring multiparticle correlations via integrals over correlation functions. A modification of measures used in the characterization of chaotic dynamical sytems permits fast and flexible calculation of factorial moments and cumulants as well as their differential versions. Higher order correlation integral measurements even of large multiplicity events such as encountered in heavy ion collisons are now feasible. The change from ``ordinary'' to ``factorial'' powers may have important consequences in other fields such as the study of galaxy correlations and Bose-Einstein interferometry.Comment: 23 pages, 6 tar-compressed uuencoded PostScript figures appended, preprint TPR-92-4

    Bispectral reconstruction of speckle-degraded images

    Get PDF
    The bispectrum of a signal has useful properties such as being zero for a Gaussian random process, retaining both phase and magnitude information of the Fourier transform of a signal, and being insensitive to linear motion. It has found applications in a wide variety of fields. The use of these properties for reducing speckle in coherent imaging systems was investigated. It was found that the bispectrum could be used to restore speckle-degraded images. Coherent speckle noise is modeled as a multiplicative noise process. By using a logarithmic transformation, this speckle noise is converted to a signal independent, additive process which is close to Gaussian when an integrating aperture is used. Bispectral reconstruction of speckle-degraded images is performed on such logarithmically transformed images when we have independent multiple snapshots

    Seismic Ray Impedance Inversion

    Get PDF
    This thesis investigates a prestack seismic inversion scheme implemented in the ray parameter domain. Conventionally, most prestack seismic inversion methods are performed in the incidence angle domain. However, inversion using the concept of ray impedance, as it honours ray path variation following the elastic parameter variation according to Snell’s law, shows the capacity to discriminate different lithologies if compared to conventional elastic impedance inversion. The procedure starts with data transformation into the ray-parameter domain and then implements the ray impedance inversion along constant ray-parameter profiles. With different constant-ray-parameter profiles, mixed-phase wavelets are initially estimated based on the high-order statistics of the data and further refined after a proper well-to-seismic tie. With the estimated wavelets ready, a Cauchy inversion method is used to invert for seismic reflectivity sequences, aiming at recovering seismic reflectivity sequences for blocky impedance inversion. The impedance inversion from reflectivity sequences adopts a standard generalised linear inversion scheme, whose results are utilised to identify rock properties and facilitate quantitative interpretation. It has also been demonstrated that we can further invert elastic parameters from ray impedance values, without eliminating an extra density term or introducing a Gardner’s relation to absorb this term. Ray impedance inversion is extended to P-S converted waves by introducing the definition of converted-wave ray impedance. This quantity shows some advantages in connecting prestack converted wave data with well logs, if compared with the shearwave elastic impedance derived from the Aki and Richards approximation to the Zoeppritz equations. An analysis of P-P and P-S wave data under the framework of ray impedance is conducted through a real multicomponent dataset, which can reduce the uncertainty in lithology identification.Inversion is the key method in generating those examples throughout the entire thesis as we believe it can render robust solutions to geophysical problems. Apart from the reflectivity sequence, ray impedance and elastic parameter inversion mentioned above, inversion methods are also adopted in transforming the prestack data from the offset domain to the ray-parameter domain, mixed-phase wavelet estimation, as well as the registration of P-P and P-S waves for the joint analysis. The ray impedance inversion methods are successfully applied to different types of datasets. In each individual step to achieving the ray impedance inversion, advantages, disadvantages as well as limitations of the algorithms adopted are detailed. As a conclusion, the ray impedance related analyses demonstrated in this thesis are highly competent compared with the classical elastic impedance methods and the author would like to recommend it for a wider application
    • …
    corecore