7,581 research outputs found

    The matrix rate of return

    Get PDF
    In this paper we give definitions of matrix rates of return which do not depend on the choice of basis describing baskets. We give their economic interpretation. The matrix rate of return describes baskets of arbitrary type and extends portfolio analysis to the complex variable domain. This allows us for simultaneous analysis of evolution of baskets parameterized by complex variables in both continuous and discrete time models.Comment: APFA5 Conference, Torino, 200

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlogn)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3logL)O(L^3 \log L) scaling by the Ewald-type approaches

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train
    corecore