4,607 research outputs found

    Tauberian class estimates for vector-valued distributions

    Get PDF
    We study Tauberian properties of regularizing transforms of vector-valued tempered distributions, that is, transforms of the form Mφf(x,y)=(fφy)(x)M^{\mathbf{f}}_{\varphi}(x,y)=(\mathbf{f}\ast\varphi_{y})(x), where the kernel φ\varphi is a test function and φy()=ynφ(/y)\varphi_{y}(\cdot)=y^{-n}\varphi(\cdot/y). We investigate conditions which ensure that a distribution that a priori takes values in locally convex space actually takes values in a narrower Banach space. Our goal is to characterize spaces of Banach space valued tempered distributions in terms of so-called class estimates for the transform Mφf(x,y)M^{\mathbf{f}}_{\varphi}(x,y). Our results generalize and improve earlier Tauberian theorems of Drozhzhinov and Zav'yalov [Sb. Math. 194 (2003), 1599-1646]. Special attention is paid to find the optimal class of kernels φ\varphi for which these Tauberian results hold.Comment: 24 pages. arXiv admin note: substantial text overlap with arXiv:1012.509

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure

    Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermodynamic properties

    Full text link
    The wavelet transform, a family of orthonormal bases, is introduced as a technique for performing multiresolution analysis in statistical mechanics. The wavelet transform is a hierarchical technique designed to separate data sets into sets representing local averages and local differences. Although one-to-one transformations of data sets are possible, the advantage of the wavelet transform is as an approximation scheme for the efficient calculation of thermodynamic and ensemble properties. Even under the most drastic of approximations, the resulting errors in the values obtained for average absolute magnetization, free energy, and heat capacity are on the order of 10%, with a corresponding computational efficiency gain of two orders of magnitude for a system such as a 4×44\times 4 Ising lattice. In addition, the errors in the results tend toward zero in the neighborhood of fixed points, as determined by renormalization group theory.Comment: 13 pages plus 7 figures (PNG

    Multiple multidimensional morse wavelets

    Get PDF
    This paper defines a set of operators that localize a radial image in space and radial frequency simultaneously. The eigenfunctions of the operator are determined and a nonseparable orthogonal set of radial wavelet functions are found. The eigenfunctions are optimally concentrated over a given region of radial space and scale space, defined via a triplet of parameters. Analytic forms for the energy concentration of the functions over the region are given. The radial function localization operator can be generalised to an operator localizing any L-2(R-2) function. It is demonstrated that the latter operator, given an appropriate choice of localization region, approximately has the same radial eigenfunctions as the radial operator. Based on a given radial wavelet function a quaternionic wavelet is defined that can extract the local orientation of discontinuous signals as well as amplitude, orientation and phase structure of locally oscillatory signals. The full set of quaternionic wavelet functions are component by component orthogonal; their statistical properties are tractable, and forms for the variability of the estimators of the local phase and orientation are given, as well as the local energy of the image. By averaging estimators across wavelets, a substantial reduction in the variance is achieved
    corecore