16 research outputs found

    Multicriteria global optimization for biocircuit design

    Get PDF
    One of the challenges in Synthetic Biology is to design circuits with increasing levels of complexity. While circuits in Biology are complex and subject to natural tradeoffs, most synthetic circuits are simple in terms of the number of regulatory regions, and have been designed to meet a single design criterion. In this contribution we introduce a multiobjective formulation for the design of biocircuits. We set up the basis for an advanced optimization tool for the modular and systematic design of biocircuits capable of handling high levels of complexity and multiple design criteria. Our methodology combines the efficiency of global Mixed Integer Nonlinear Programming solvers with multiobjective optimization techniques. Through a number of examples we show the capability of the method to generate non intuitive designs with a desired functionality setting up a priori the desired level of complexity. The presence of more than one competing objective provides a realistic design setting where every design solution represents a trade-off between different criteria. The tool can be useful to explore and identify different design principles for synthetic gene circuits

    Design Principles of Biological Oscillators through Optimization: Forward and Reverse Analysis

    Get PDF
    26 páginas, 10 figuras, 1 tabla.-- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedFrom cyanobacteria to human, sustained oscillations coordinate important biological functions. Although much has been learned concerning the sophisticated molecular mechanisms underlying biological oscillators, design principles linking structure and functional behavior are not yet fully understood. Here we explore design principles of biological oscillators from a multiobjective optimization perspective, taking into account the trade-offs between conflicting performance goals or demands. We develop a comprehensive tool for automated design of oscillators, based on multicriteria global optimization that allows two modes: (i) the automatic design (forward problem) and (ii) the inference of design principles (reverse analysis problem). From the perspective of synthetic biology, the forward mode allows the solution of design problems that mimic some of the desirable properties appearing in natural oscillators. The reverse analysis mode facilitates a systematic exploration of the design space based on Pareto optimality concepts. The method is illustrated with two case studies: the automatic design of synthetic oscillators from a library of biological parts, and the exploration of design principles in 3-gene oscillatory systemsThis work was supported by MINECO (and the European Regional Development Fund) project ªSYNBIOFACTORYº (grant number DPI2014-55276-C5-2-R).Peer reviewe

    A multiobjective optimization approach to statistical mechanics

    Full text link
    Optimization problems have been the subject of statistical physics approximations. A specially relevant and general scenario is provided by optimization methods considering tradeoffs between cost and efficiency, where optimal solutions involve a compromise between both. The theory of Pareto (or multi objective) optimization provides a general framework to explore these problems and find the space of possible solutions compatible with the underlying tradeoffs, known as the {\em Pareto front}. Conflicts between constraints can lead to complex landscapes of Pareto optimal solutions with interesting implications in economy, engineering, or evolutionary biology. Despite their disparate nature, here we show how the structure of the Pareto front uncovers profound universal features that can be understood in the context of thermodynamics. In particular, our study reveals that different fronts are connected to different classes of phase transitions, which we can define robustly, along with critical points and thermodynamic potentials. These equivalences are illustrated with classic thermodynamic examples.Comment: 14 pages, 8 figure

    Optimization Alternatives for Robust Model-based Design of Synthetic Biological Circuits

    Full text link
    [EN] Synthetic biology is reaching the situation where tuning devices by hand is no longer possible due to the complexity of the biological circuits being designed. Thus, mathematical models need to be used in order, not only to predict the behavior of the designed synthetic devices; but to help on the selection of the biological parts, i.e., guidelines for the experimental implementation. However, since uncertainties are inherent to biology, the desired dynamics for the circuit usually requires a trade-off among several goals. Hence, a multi-objective optimization design (MOOD) naturally arises to get a suitable parametrization (or range) of the required kinetic parameters to build a biological device with some desired properties. Biologists have classically addressed this problem by evaluating a set of random Monte Carlo simulations with parameters between an operation range. In this paper, We propose solving the MOOD by means of dynamic programming using both a global multi-objective evolutionary algorithm (MOLA) and a local gradient-based nonlinear programming (NLP) solver. The performance of both alternatives is then checked in the design of a well-known biological circuit: a genetic incoherent feed-forward loop showing adaptive behavior. (C) 2016, IFAC (International Federation of Antomatic Control) Hosting by Elsevier Ltd. All rights reserved.The research leading to these results has received funding from the European Union (FP7/2007-2013 under grant agreement no604068), the Spanish Government (FEDER-CICYT DPI2011-524 28112-C04-01, DPI2014-55276-C5-1-R, DPI2015-70975-P) and the National Council of Scientific and Technologic Development of Brazil (BJT-304804/2014-2). Yadira Boada thanks also grant FPI/2013-3242 of the Universitat Politecnica de ValenciaBoada-Acosta, YF.; Pitarch Pérez, JL.; Vignoni, A.; Reynoso Meza, G.; Picó, J. (2016). Optimization Alternatives for Robust Model-based Design of Synthetic Biological Circuits. IFAC-PapersOnLine. 49(7):821-826. https://doi.org/10.1016/j.ifacol.2016.07.291S82182649

    A computational method for the investigation of multistable systems and its application to genetic switches

    Get PDF
    BACKGROUND: Genetic switches exhibit multistability, form the basis of epigenetic memory, and are found in natural decision making systems, such as cell fate determination in developmental pathways. Synthetic genetic switches can be used for recording the presence of different environmental signals, for changing phenotype using synthetic inputs and as building blocks for higher-level sequential logic circuits. Understanding how multistable switches can be constructed and how they function within larger biological systems is therefore key to synthetic biology. RESULTS: Here we present a new computational tool, called StabilityFinder, that takes advantage of sequential Monte Carlo methods to identify regions of parameter space capable of producing multistable behaviour, while handling uncertainty in biochemical rate constants and initial conditions. The algorithm works by clustering trajectories in phase space, and iteratively minimizing a distance metric. Here we examine a collection of models of genetic switches, ranging from the deterministic Gardner toggle switch to stochastic models containing different positive feedback connections. We uncover the design principles behind making bistable, tristable and quadristable switches, and find that rate of gene expression is a key parameter. We demonstrate the ability of the framework to examine more complex systems and examine the design principles of a three gene switch. Our framework allows us to relax the assumptions that are often used in genetic switch models and we show that more complex abstractions are still capable of multistable behaviour. CONCLUSIONS: Our results suggest many ways in which genetic switches can be enhanced and offer designs for the construction of novel switches. Our analysis also highlights subtle changes in correlation of experimentally tunable parameters that can lead to bifurcations in deterministic and stochastic systems. Overall we demonstrate that StabilityFinder will be a valuable tool in the future design and construction of novel gene networks

    A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology

    Get PDF
    [Abstract] Background: We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods: We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results: We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions: These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.Ministerio de Economía y Competitividad; DPI2014-55276-C5-2-RMinisterio de Economía y Competitividad; TIN2016-75845-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2016/045Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/05
    corecore