427 research outputs found

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    A novel modeling approach for express package carrier planning

    Full text link
    Express package carrier networks have large numbers of heavily-interconnected and tightly-constrained resources, making the planning process difficult. A decision made in one area of the network can impact virtually any other area as well. Mathematical programming therefore seems like a logical approach to solving such problems, taking into account all of these interactions. The tight time windows and nonlinear cost functions of these systems, however, often make traditional approaches such as multicommodity flow formulations intractable. This is due to both the large number of constraints and the weakness of the linear programming (LP) relaxations arising in these formulations. To overcome these obstacles, we propose a model in which variables represent combinations of loads and their corresponding routings, rather than assigning individual loads to individual arcs in the network. In doing so, we incorporate much of the problem complexity implicitly within the variable definition, rather than explicitly within the constraints. This approach enables us to linearize the cost structure, strengthen the LP relaxation of the formulation, and drastically reduce the number of constraints. In addition, it greatly facilitates the inclusion of other stages of the (typically decomposed) planning process. We show how the use of templates, in place of traditional delayed column generation, allows us to identify promising candidate variables, ensuring high-quality solutions in reasonable run times while also enabling the inclusion of additional operational considerations that would be difficult if not impossible to capture in a traditional approach. Computational results are presented using data from a major international package carrier. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60965/1/20310_ftp.pd

    Development of Cislunar Space Logistics Networks for Satellite Constellation Support Using Event-Driven Generalized Multi-Commodity Network Flows

    Get PDF
    As space becomes an increasingly congested domain, the risk of damage to satellite constellations is increasing. In response, there is an increasing need for capabilities for unmanned repair, refueling, and reconstitution (R3) of those constellations. Cislunar orbits offer a promising storage and low-cost transfer solution for on-orbit service vehicles and replacement satellites to leverage those capabilities. This research makes use of mixed-integer linear programming-based logistics models to determine the situations in which a cislunar mission architecture would offer a cost-effective alternative to Earth-based R3. The network models presented in this research make use of the latest developments in Event-Driven Generalized Multi-Commodity Network Flows (ED-GMCNF), a new method of optimization that enables variable time steps between events. This research combines a new version of an ED-GMCNF with cislunar trajectory optimization to evaluate both the feasibility of cislunar orbits as well as the potential effects of lunar fuel production on R3 costs. This investigation finds, through an exhaustive numerical simulation campaign, that cislunar logistics networks provide cost-effective means of R3 regiments for Earth-orbiting and cislunar satellites when a lunar fuel supply is taken into consideration. The ED-GMCNF methodology also offers a promising foundation for future work in the mission planning field

    Development of Minimum Delta-V Trajectories to Service GEO Assets from Cislunar Space

    Get PDF
    Orbits around Earth are becoming increasingly congested and contested, posing potential future threats to space assets. Cislunar space may offer an effective solution to these problems by offering storage for servicing and replacement vehicles. This investigation explores how to minimize the dV costs required of a network of service vehicles traveling from cislunar space to GEO using in-situ resource utilization. In this investigation the arc costs of an event-driven generalized multicommodity network flow are generated for creation of a model to be used to develop a dynamic scheduler. High-thrust trajectories between various inclinations of GEO, an Earth-Moon L1 Lyapunov orbit (L1), and a distant prograde orbit (DPO) are used. The effect of orbit radius on minimizing dV of inclination changes in GEO is also investigated to determine arc costs for multiple deliveries within GEO. It was found that there is little variation in time-of-flight in trajectories leaving L1, but significant variation in dV costs. DPO trajectories also appear to offer significant dV savings in comparison to L1 trajectories. In GEO, dV costs of inclination changes are minimized either at GEO radius (42,164 km) or at a multiple of 1.25xGEO radius (52,75 km)

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Gemischt-autonome Flotten in der urbanen Logistik

    Get PDF
    We consider a city logistics application in which a service provider seeks a repeatable plan to transport commodities from distribution centers to satellites. The service provider uses a mixed autonomous fleet that is composed of autonomous vehicles and manually operated vehicles. The autonomous vehicles are only able to travel independently on feasible streets of the heterogeneous infrastructure but elsewhere need to be pulled by manually operated vehicles in platoons. We introduce the service network design problem with mixed autonomous fleets to determine a tactical plan that minimizes the total costs over a medium-term time horizon. The tactical plan determines the size and mix of the fleet, schedules transportation services, and decides on the routing or outsourcing of commodities. We model this problem as an integer program on a time-expanded network and study the impact of different problem characteristics on the solutions. To precisely depict the synchronization requirements of the problem, the time-expanded networks need to consider narrow time intervals. Thus, we develop an exact solution approach based on the dynamic discretization discovery scheme that refines partially time-expanded networks containing only a fraction of the nodes and arcs of the fully time-expanded network. Further methodological contributions of this work include the introduction of valid inequalities, two enhancements that exploit linear relaxations, and a heuristic search space restriction. Computational experiments show that all evaluated variants of the solution approach outperform a commercial solver. For transferring a tactical plan to an operational solution that minimizes the transshipment effort on a given day, we present a post-processing technique that specifically assigns commodities to vehicles and vehicles to platoons. Finally, we solve a case study on a real-world based network resembling the city of Braunschweig, Germany. Analyzing the tactical and operational solutions, we assess the value of using a mixed autonomous fleet and derive practical implications.Wir betrachten eine Anwendung der urbanen Logistik, bei der ein Dienstleister einen wiederholbaren Plan für den Gütertransport von Distributionszentren zu Satelliten anstrebt. Dafür setzt der Dienstleister eine gemischt-autonome Flotte ein, die sich aus autonomen Fahrzeugen und manuell gesteuerten Fahrzeugen zusammensetzt. Die autonomen Fahrzeuge können nur auf bestimmten Straßen der heterogenen Infrastruktur selbstständig fahren, außerhalb dieser müssen sie von manuell gesteuerten Fahrzeugen mittels Platooning gezogen werden. Wir führen das „service network design problem with mixed autonomous fleets“ ein, um einen taktischen Plan zu ermitteln, der die Gesamtkosten über einen mittelfristigen Zeithorizont minimiert. Der taktische Plan bestimmt die Größe und Zusammensetzung der Flotte, legt die Transportdienste fest und entscheidet über das Routing oder das Outsourcing von Gütern. Wir modellieren dieses Problem als ganzzahliges Programm auf einem zeiterweiterten Netzwerk und untersuchen die Auswirkungen verschiedener Problemeigenschaften auf die Lösungen. Um die Synchronisationsanforderungen des Problems präzise darzustellen, müssen die zeiterweiterten Netzwerke kleine Zeitintervalle berücksichtigen. Daher entwickeln wir einen exakten Lösungsansatz, der auf dem Schema des „dynamic discretization discovery“ basiert und partiell zeiterweiterte Netzwerke entwickelt, die nur einen Teil der Knoten und Kanten des vollständig zeiterweiterten Netzwerks enthalten. Weitere methodische Beiträge dieser Dissertation umfassen die Einführung von Valid Inequalities, zweier Erweiterungen, die lineare Relaxationen verwenden, und einer heuristischen Suchraumbegrenzung. Experimente zeigen, dass alle evaluierten Varianten des Lösungsansatzes einen kommerziellen Solver übertreffen. Um einen taktischen Plan in eine operative Lösung zu überführen, die die Umladevorgänge an einem bestimmten Tag minimiert, stellen wir eine Post-Processing-Methode vor, mit der Güter zu Fahrzeugen und Fahrzeuge zu Platoons eindeutig zugeordnet werden. Schließlich lösen wir eine Fallstudie auf einem realitätsnahen Netzwerk, das der Stadt Braunschweig nachempfunden ist. Anhand der taktischen und operativen Lösungen bewerten wir den Nutzen einer gemischt-autonomen Flotte und leiten Implikationen für die Praxis ab
    corecore