196 research outputs found

    Properly coloured copies and rainbow copies of large graphs with small maximum degree

    Full text link
    Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz local lemma to show the following two results about colourings c of the edges of the complete graph K_n. If for each vertex v of K_n the colouring c assigns each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a copy of G in K_n which is properly edge-coloured by c. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2 edges of K_n, then there is a copy of G in K_n such that each edge of G receives a different colour from c. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page

    Rainbow spanning subgraphs in bounded edge–colourings of graphs with large minimum degree

    Get PDF
    We study the existence of rainbow perfect matching and rainbow Hamiltonian cycles in edge–colored graphs where every color appears a bounded number of times. We derive asymptotically tight bounds on the minimum degree of the host graph for the existence of such rainbow spanning structures. The proof uses a probabilisitic argument combined with switching techniques

    Rainbow spanning subgraphs in bounded edge–colourings of graphs with large minimum degree

    Get PDF
    We study the existence of rainbow perfect matching and rainbow Hamiltonian cycles in edge–colored graphs where every color appears a bounded number of times. We derive asymptotically tight bounds on the minimum degree of the host graph for the existence of such rainbow spanning structures. The proof uses a probabilisitic argument combined with switching techniques.Postprint (updated version
    • …
    corecore