1,137 research outputs found

    Multicolour imaging of z= 2 QSO hosts

    Get PDF
    We present multicolour images of the hosts of three z=2 QSOs previously detected in R-band by our group. The luminosities, colours and sizes of the hosts overlap with those of actively star-forming galaxies in the nearby Universe. Radial profiles over the outer resolved areas roughly follow de Vaucouleur or exponential disk laws. These properties give support to the host galaxy interpretation of the extended light around QSOs at high-redshift. The rest-frame UV colours and upper limits derived for the rest-frame UV-optical colours are inconsistent with the hypothesis of a scattered halo of light from the active nucleus by a simple optically-thin scattering process produced by dust or hot electrons. If the UV light is indeed stellar, star formation rates of hundreds of solar masses per year are implied, an order of magnitude larger than field galaxies at similar redshifts and above. This might indicate that the QSO phenomenon (at least the high-luminosity one) is preferentially acompanied by enhanced galactic activity at high-redshifts.Comment: Accepted to be published in MNRAS. 11 pages, Latex, uses mn macros, also available at http://www.mpa-garching.mpg.de/~itzia

    Wide and deep near-UV (360nm) galaxy counts and the extragalactic background light with the Large Binocular Camera

    Full text link
    Deep multicolour surveys are the main tool to explore the formation and evolution of the faint galaxies which are beyond the spectroscopic limit with the present technology. The photometric properties of these faint galaxies are usually compared with current renditions of semianalytical models to provide constraints on the fundamental physical processes involved in galaxy formation and evolution, namely the mass assembly and the star formation. Galaxy counts over large sky areas in the near-UV band are important because they are difficult to obtain given the low efficiency of near-UV instrumentation, even at 8m class telescopes. A large instrumental field of view helps in minimizing the biases due to the cosmic variance. We have obtained deep images in the 360nm U band provided by the blue channel of the Large Binocular Camera at the prime focus of the Large Binocular Telescope. We have derived over an area of ~0.4 sq. deg. the galaxy number counts down to U=27 in the Vega system (corresponding to U=27.86 in the AB system) at a completeness level of 30% reaching the faintest current limit for this wavelength and sky area. The shape of the galaxy counts in the U band can be described by a double power-law, the bright side being consistent with the shape of shallower surveys of comparable or greater areas. The slope bends over significantly at U>23.5 ensuring the convergence of the contribution by star forming galaxies to the EBL in the near-UV band to a value which is more than 70% of the most recent upper limits derived for this band. We have jointly compared our near-UV and K band counts collected from the literature with few selected hierarchical CDM models emphasizing critical issues in the physical description of the galaxy formation and evolution.Comment: Accepted for publication in A&A. Uses aa.cls, 9 pages, 4 figures. Citations update

    Fundamental Parameters of He-Weak and He-Strong Stars

    Get PDF
    We carried out low resolution spectroscopic observations in the wavelength range 3400-4700 A of 20 He-weak and 8 He-strong stars to determine their fundamental parameters by means of the Divan-Chalonge-Barbier (BCD) spectrophotometric system. For a few He-weak stars we also estimate the effective temperatures and the angular diameters by integrating absolute fluxes observed over a wide spectral range. Non-LTE model calculations are carried out to study the influence of the He/H abundance ratio on the emergent radiation of He-strong stars and on their Teff determination. We find that the effective temperatures, surface gravities and bolometric absolute magnitudes of He-weak stars estimated with the BCD system and the integrated flux method are in good agreement between each other, and they also agree with previous determinations based on several different methods. The mean discrepancy between the visual absolute magnitudes derived using the Hipparcos parallaxes and the BCD values is on average 0.3 mag for He-weak stars, while it is 0.5 mag for He-strong stars. For He-strong stars, we note that the BCD calibration, based on stars in the solar environment, leads to overestimated values of Teff. By means of model atmosphere calculations with enhanced He/H abundance ratios we show that larger He/H ratios produce smaller BD which naturally explains the Teff overestimation. We take advantage of these calculations to introduce a method to estimate the He/H abundance ratio in He-strong stars. The BD of HD 37479 suggests that the Teff of this star remains fairly constant as the star spectrum undergoes changes in the intensity of H and He absorption lines. Data for the He-strong star HD 66765 are reported for the first time.Comment: Accepted for publication in A&

    The effect of stellar limb darkening values on the accuracy of the planet radii derived from photometric transit observations

    Full text link
    We study how the precision of the exoplanet radius determination is affected by our present knowledge of limb darkening in two cases: when we fix the limb darkening coefficients and when we adjust them. We also investigate the effects of spots in one-colour photometry. We study the effect of limb darkening on the planetary radius determination both via analytical expressions and by numerical experiments. We also compare some of the existing limb darkening tables. When stellar spots affect the fit, we replace the limb darkening coefficients, calculated for the unspotted cases, with effective limb darkening coefficients to describe the effect of the spots. There are two important cases. (1) When one fixes the limb darkening values according to some theoretical predictions, the inconsistencies of the tables do not allow us to reach accuracy in the planetary radius of better than 1-10% (depending on the impact parameter) if the host star's surface effective temperature is higher than 5000 K. Below 5000 K the radius ratio determination may contain even 20% error. (2) When one allows adjustment of the limb darkening coefficients, the a/Rs ratio, the planet-to-stellar radius ratio, and the impact parameter can be determined with sufficient accuracy (<1%), if the signal-to-noise ratio is high enough. However, the presence of stellar spots and faculae can destroy the agreement between the limb darkening tables and the fitted limb darkening coefficients, but this does not affect the precision of the planet radius determination. We also find that it is necessary to fit the contamination factor, too. We conclude that the present inconsistencies of theoretical stellar limb darkening tables suggests one should not fix the limb darkening coefficients. When one allows them to be adjusted, then the planet radius, impact parameter, and the a/Rs can be obtained with the required precision.Comment: Astronomy & Astrophysics Vol. 549, A9 (2013) - 11 page

    XMM-Newton and INTEGRAL observations of the very faint X-ray transient IGRJ17285-2922/XTEJ1728-295 during the 2010 outburst

    Full text link
    We report the first broad-band (0.5-150 keV) simultaneous X-ray observations of the very faint X-ray transient IGRJ17285-2922/XTEJ1728-295 performed with XMM-Newton and INTEGRAL satellites during its last outburst, started on 2010, August 28. XMM-Newton observed the source on 2010 September 9-10, for 22ks. INTEGRAL observations were part of the publicly available Galactic Bulge program, and overlapped with the times covered by XMM-Newton. The broad-band spectroscopy resulted in a best-fit with an absorbed power law displaying a photon index of 1.61+/-0.01, an absorbing column density of (5.10+/-0.05)E21 cm-2, and a flux of 2.4E-10 erg/cm2/s (1-100 keV), corrected for the absorption. The data did not require either a spectral cut-off (E>50 keV) or an additional soft component. The slopes of the XMM-Newton and INTEGRAL separate spectra were compatible, within the uncertainties. The timing analysis does not show evidence either for X-ray pulsations or for type I X-ray bursts. The broad band X-ray spectrum as well as the power density spectrum are indicative of a low hard state in a low mass X-ray binary, although nothing conclusive can be said about the nature of the compact object (neutron star or black hole). The results we are reporting here allow us to conclude that IGRJ17285-2922 is a low mass X-ray binary, located at a distance greater than 4 kpc.Comment: Accepted for publication in MNRAS; 7 pages, 6 figure, 1 table. Accepted 2011 April 5. Received 2011 April 5; in original form 2011 February 2

    A study on the multicolour evolution of Red Sequence galaxy populations: insights from hydrodynamical simulations and semi-analytical models

    Get PDF
    By means of our own cosmological-hydrodynamical simulation and semi-analytical model we studied galaxy population properties in clusters and groups, spanning over 10 different bands from UV to NIR, and their evolution since redshift z=2. We compare our results in terms of galaxy red/blue fractions and luminous-to-faint ratio (LFR) on the Red Sequence (RS) with recent observational data reaching beyond z=1.5. Different selection criteria were tested in order to retrieve galaxies belonging to the RS: either by their quiescence degree measured from their specific SFR ("Dead Sequence"), or by their position in a colour-colour plane which is also a function of sSFR. In both cases, the colour cut and the limiting magnitude threshold were let evolving with redshift, in order to follow the natural shift of the characteristic luminosity in the LF. We find that the Butcher-Oemler effect is wavelength-dependent, with the fraction of blue galaxies increasing steeper in optical colours than in NIR. Besides, only when applying a lower limit in terms of fixed absolute magnitude, a steep BO effect can be reproduced, while the blue fraction results less evolving when selecting samples by stellar mass or an evolving magnitude limit. We then find that also the RS-LFR behaviour, highly debated in the literature, is strongly dependent on the galaxy selection function: in particular its very mild evolution recovered when measured in terms of stellar mass, is in agreement with values reported for some of the highest redshift confirmed (proto)clusters. As to differences through environments, we find that normal groups and (to a lesser extent) cluster outskirts present the highest values of both star forming fraction and LFR at low z, while fossil groups and cluster cores the lowest: this separation among groups begins after z~0.5, while earlier all group star forming properties are undistinguishable.Comment: revised version, A&A accepted (11 pages, 6 figures

    Secular changes in the quiescence of WZ Sge: the development of a cavity in the inner disk

    Full text link
    We find a dimming during optical quiescence of the cataclysmic variable WZ Sge by about half a magnitude between superoutbursts. We connect the dimming with the development of a cavity in the inner part of the accretion disk. We suggest that, when the cavity is big enough, accretion of material is governed by the magnetic field of the white dwarf and pulsations from the weakly magnetic white dwarf appear. The time scale of forming the cavity is about a decade, and it persists throughout the whole quiescent phase. Such a cavity can be accommodated well by the proposed magnetic propeller model for WZ Sge, where during quiescence mass is being expelled by the magnetic white dwarf from the inner regions of the accretion disk to larger radii.Comment: 10 pages, 4 figures, accepted for publication in Astronomy and Astrophysics; following referee report, many textual changes, figures improved, more historic data added, conclusions unchange
    • …
    corecore