11 research outputs found

    The interleaved multichromatic number of a graph

    Full text link
    For k1k\ge 1, we consider interleaved kk-tuple colorings of the nodes of a graph, that is, assignments of kk distinct natural numbers to each node in such a way that nodes that are connected by an edge receive numbers that are strictly alternating between them with respect to the relation <<. If it takes at least χintk(G)\chi_{int}^k(G) distinct numbers to provide graph GG with such a coloring, then the interleaved multichromatic number of GG is χint(G)=infk1χintk(G)/k\chi_{int}^*(G)=\inf_{k\ge 1}\chi_{int}^k(G)/k and is known to be given by a function of the simple cycles of GG under acyclic orientations if GG is connected [1]. This paper contains a new proof of this result. Unlike the original proof, the new proof makes no assumptions on the connectedness of GG, nor does it resort to the possible applications of interleaved kk-tuple colorings and their properties

    Multicoloring of graphs to secure a secret

    Get PDF
    Vertex coloring and multicoloring of graphs are a well known subject in graph theory, as well as their applications. In vertex multicoloring, each vertex is assigned some subset of a given set of colors. Here we propose a new kind of vertex multicoloring, motivated by the situation of sharing a secret and securing it from the actions of some number of attackers. We name the multicoloring a highly a-resistant vertex k-multicoloring, where a is the number of the attackers, and k the number of colors. For small values a we determine what is the minimal number of vertices a graph must have in order to allow such a coloring, and what is the minimal number of colors needed

    Multicoloring of Graphs to Secure a Secret

    Get PDF
    Vertex coloring and multicoloring of graphs are a well known subject in graph theory, as well as their applications. In vertex multicoloring, each vertex is assigned some subset of a given set of colors. Here we propose a new kind of vertex multicoloring, motivated by the situation of sharing a secret and securing it from the actions of some number of attackers. We name the multicoloring a highly aa-resistant vertex kk-multicoloring, where aa is the number of the attackers, and kk the number of colors. For small values aa we determine what is the minimal number of vertices a graph must have in order to allow such a coloring, and what is the minimal number of colors needed.Comment: 19 pages, 5 figure

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Fast algorithms for two scheduling problems

    Get PDF
    The thesis deals with problems from two distint areas of scheduling theory. In the first part we consider the preemptive Sum Multicoloring (pSMC) problem. In an instance of pSMC, pairwise conflicting jobs are represented by a conflict graph, and the time demands of jobs are given by integer weights on the nodes. The goal is to schedule the jobs in such a way that the sum of their finish times is minimized. We give the first polynomial algorithm for pSMC on paths and cycles, running in time O(min(n², n log p)), where n is the number of nodes and p is the largest time demand. This answers a question raised by Halldórsson et al. [51] about the hardness of this problem. Our result identifies a gap between binary-tree conflict graphs - where the question is NP-hard - and paths. In the second part of the thesis we consider the problem of scheduling n jobs on m machines of different speeds s.t. the makespan is minimized (Q||C_max). We provide a fast and simple, deterministic monotone 2.8-approximation algorithm for Q||C_max. Monotonicity is relevant in the context of truthful mechanisms: when each machine speed is only known to the machine itself, we need to motivate that machines "declare" their true speeds to the scheduling mechanism. So far the best deterministic truthful mechanism that is polynomial in n and m; was a 5-approximation by Andelman et al. [3]. A randomized 2-approximation method, satisfying a weaker definition of truthfulness, was given by Archer and Tardos [4, 5]. As a core result, we prove the conjecture of Auletta et al. [8], that the greedy list scheduling algorithm Lpt is monotone if machine speeds are all integer powers of two (2-divisible machines). Proving the worst case bound of 2.8 involves studying the approximation ratio of Lpt on 2-divisible machines. As a side result, we obtain a tight bound of (sqrt(3) + 1)/2 ~= 1.3660 for the "one fast machine" case, i.e., when m - 1 machine speeds are equal, and there is only one faster machine. In this special case the best previous lower and upper bounds were 4/3 - epsilon < Lpt/Opt <= 3/2 - 1/(2m), shown in a classic paper by Gonzalez et al. [42]. Moreover, the authors of [42] conjectured the bound 4/3 to be tight. Thus, the results of the thesis answer three open questions in scheduling theory.In dieser Arbeit befassen wir uns mit Problemen aus zwei verschiedenen Teilgebieten der Scheduling-Theorie. Im ersten Teil betrachten wir das sog. preemptive Sum Multicoloring (pSMC) Problem. In einer Eingabe für pSMC werden paarweise Konflikte zwischen Jobs durch einen Konfliktgraphen repräsentiert; der Zeitbedarf eines Jobs ist durch ein ganzzahliges, positives Gewicht in seinem jeweiligen Knoten gegeben. Die Aufgabe besteht darin, die Jobs so den Maschinen zuzuweisen, dass die Summe ihrer Maschinenlaufzeiten minimiert wird. Wir liefern den ersten Algorithmus für pSMC auf Pfaden und Kreisen mit polynomieller Laufzeit; er benötigt O(min(n², n log p)) Zeit, wobei n die Anzahl der Jobs und p die maximale Zeitanforderung darstellen. Dies liefert eine Antwort auf die von Halldórsson et al. [51] aufgeworfene Frage der Komplexitätsklasse von pSMC. Unser Resultat identifiziert eine Diskrepanz zwischen der Komplexität auf binären Bäumen - für diese ist das Problem NP-schwer - und Pfaden. Im zweiten Teil dieser Arbeit betrachten wir das Problem, n Jobs auf m Maschinen mit unterschiedlichen Geschwindigkeiten so zu verteilen, dass der Makespan minimiert wird (Q||C_max). Wir präsentieren einen einfachen deterministischen monotonen Algorithmus mit Approximationsgüte 2.8 für Q||C_max. Monotonie ist relevant im Zusammenhang mit truthful Mechanismen: wenn die Geschwindigkeiten der Maschinen nur diesen selbst bekannt sind, müssen sie motiviert werden, dem Scheduling Mechanismus ihre tatsächlichen Geschwindigkeiten offenzulegen. Der beste bisherige deterministische truthful Mechanismus mit polynomieller Laufzeit in n und m von Andelman et al. [3] erreicht Approximationsgüte fünf. Eine randomisierte Methode mit ApproximationsgÄute zwei, die jedoch nur eine schwächere Definition von truthful Mechanismen unterstützt, wurde von Archer und Tardos [4, 5] entwickelt. Als ein zentrales Ergebnis beweisen wir die Vermutung von Auletta et al. [8], dass der greedy list-scheduling Algorithmus Lpt monoton ist, falls alle Maschinengeschwindigkeiten ganze Potenzen von zwei sind (2-divisible Maschinen). Der Beweis der obigen Approximationsschranke von 2.8 benutzt die Approximationsgüte von Lpt auf 2-divisible Maschinen. Als Nebenresultat erhalten wir eine scharfe Schranke von (sqrt(3) + 1)/2 ~= 1.3660 für den Fall "einer schnellen Maschine", d.h. m - 1 Maschinen haben identische Geschwindigkeiten und es gibt nur eine schnellere Maschine. Die bisherigen besten unteren und oberen Schranken für diesen Spezialfall waren 4/3 - epsilon < Lpt/Opt <= 3/2 - 1/(2m). Letztere wurden 1977 von Gonzalez, Ibara und Sahni [42] bewiesen, die mutmaßten, dass die tatächliche obere Schranke bei 4=3 läge. Alles in allem, liefert diese Arbeit Antworten auf drei offene Fragen im Bereich der Scheduling-Theorie
    corecore