341 research outputs found

    Classifying motor imagery in presence of speech

    Get PDF
    In the near future, brain-computer interface (BCI) applications for non-disabled users will require multimodal interaction and tolerance to dynamic environment. However, this conflicts with the highly sensitive recording techniques used for BCIs, such as electroencephalography (EEG). Advanced machine learning and signal processing techniques are required to decorrelate desired brain signals from the rest. This paper proposes a signal processing pipeline and two classification methods suitable for multiclass EEG analysis. The methods were tested in an experiment on separating left/right hand imagery in presence/absence of speech. The analyses showed that the presence of speech during motor imagery did not affect the classification accuracy significantly and regardless of the presence of speech, the proposed methods were able to separate left and right hand imagery with an accuracy of 60%. The best overall accuracy achieved for the 5-class separation of all the tasks was 47% and both proposed methods performed equally well. In addition, the analysis of event-related spectral power changes revealed characteristics related to motor imagery and speech

    Electroencephalograph (EEG) signal processing techniques for motor imagery Brain Computer interface systems

    Get PDF
    Brain-Computer Interface (BCI) system provides a channel for the brain to control external devices using electrical activities of the brain without using the peripheral nervous system. These BCI systems are being used in various medical applications, for example controlling a wheelchair and neuroprosthesis devices for the disabled, thereby assisting them in activities of daily living. People suffering from Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis and completely locked in are unable to perform any body movements because of the damage of the peripheral nervous system, but their cognitive function is still intact. BCIs operate external devices by acquiring brain signals and converting them to control commands to operate external devices. Motor-imagery (MI) based BCI systems, in particular, are based on the sensory-motor rhythms which are generated by the imagination of body limbs. These signals can be decoded as control commands in BCI application. Electroencephalogram (EEG) is commonly used for BCI applications because it is non-invasive. The main challenges of decoding the EEG signal are because it is non-stationary and has a low spatial resolution. The common spatial pattern algorithm is considered to be the most effective technique for discrimination of spatial filter but is easily affected by the presence of outliers. Therefore, a robust algorithm is required for extraction of discriminative features from the motor imagery EEG signals. This thesis mainly aims in developing robust spatial filtering criteria which are effective for classification of MI movements. We have proposed two approaches for the robust classification of MI movements. The first approach is for the classification of multiclass MI movements based on the thinICA (Independent Component Analysis) and mCSP (multiclass Common Spatial Pattern Filter) method. The observed results indicate that these approaches can be a step towards the development of robust feature extraction for MI-based BCI system. The main contribution of the thesis is the second criterion, which is based on Alpha- Beta logarithmic-determinant divergence for the classification of two class MI movements. A detailed study has been done by obtaining a link between the AB log det divergence and CSP criterion. We propose a scaling parameter to enable a similar way for selecting the respective filters like the CSP algorithm. Additionally, the optimization of the gradient of AB log-det divergence for this application was also performed. The Sub-ABLD (Subspace Alpha-Beta Log-Det divergence) algorithm is proposed for the discrimination of two class MI movements. The robustness of this algorithm is tested with both the simulated and real data from BCI competition dataset. Finally, the resulting performances of the proposed algorithms have been favorably compared with other existing algorithms

    Signal Processing Combined with Machine Learning for Biomedical Applications

    Get PDF
    The Master’s thesis is comprised of four projects in the realm of machine learning and signal processing. The abstract of the thesis is divided into four parts and presented as follows, Abstract 1: A Kullback-Leibler Divergence-Based Predictor for Inter-Subject Associative BCI. Inherent inter-subject variability in sensorimotor brain dynamics hinders the transferability of brain-computer interface (BCI) model parameters across subjects. An individual training session is essential for effective BCI control to compensate for variability. We report a Kullback-Leibler Divergence (KLD)-based predictor for inter-subject associative BCI. An online dataset comprising left/right hand, both feet, and tongue motor imagery tasks was used to show correlation between the proposed inter-subject predictor and BCI performance. Linear regression between the KLD predictor and BCI performance showed a strong inverse correlation (r = -0.62). The KLD predictor can act as an indicator for generalized inter-subject associative BCI designs. Abstract 2: Multiclass Sensorimotor BCI Based on Simultaneous EEG and fNIRS. Hybrid BCI (hBCI) utilizes multiple data modalities to acquire brain signals during motor execution (ME) tasks. Studies have shown significant enhancements in the classification of binary class ME-hBCIs; however, four-class ME-hBCI classification is yet to be done using multiclass algorithms. We present a quad-class classification of ME-hBCI tasks from simultaneous EEG-fNIRS recordings. Appropriate features were extracted from EEG-fNIRS signals and combined for hybrid features and classified with support vector machine. Results showed a significant increase in hybrid accuracy over single modalities and show hybrid method’s performance enhancement capability. Abstract 3: Deep Learning for Improved Inter-Subject EEG-fNIRS Hybrid BCI Performance. Multimodality based hybrid BCI has become famous for performance improvement; however, the inherent inter-subject and inter-session variation between participants brain dynamics poses obstacles in achieving high performance. This work presents an inter-subject hBCI to classify right/left-hand MI tasks from simultaneous EEG-fNIRS recordings of 29 healthy subjects. State-of-art features were extracted from EEG-fNIRS signals and combined for hybrid features, and finally, classified using deep Long short-term memory classifier. Results showed an increase in the inter-subject performance for the hybrid system while making the system more robust to brain dynamics change and hints to the feasibility of EEG-fNIRS based inter-subject hBCI. Abstract 4: Microwave Based Glucose Concentration Classification by Machine Learning. Non-invasive blood sugar measurement attracts increased attention in recent years, given the increase in diabetes-related complications and inconvenience in the traditional ways using blood. This work utilized machine learning (ML) algorithms to classify glucose concentration (GC) from the measured broadband microwave scattering signals (S11). An N-type microwave adapter pair was utilized to measure the sweeping frequency scattering-parameter (S-parameter) of the glucose solutions with GC varying from 50-10,000 dg/dL. Dielectric parameters were retrieved from the measured wideband complex S-parameters based on the modified Debye dielectric dispersion model. Results indicate that the best algorithm can achieve a perfect classification accuracy and suggests an alternate way to develop a GC detection method using ML algorithms

    Diverse Feature Blend Based on Filter-Bank Common Spatial Pattern and Brain Functional Connectivity for Multiple Motor Imagery Detection

    Get PDF
    Motor imagery (MI) based brain-computer interface (BCI) is a research hotspot and has attracted lots of attention. Within this research topic, multiple MI classification is a challenge due to the difficulties caused by time-varying spatial features across different individuals. To deal with this challenge, we tried to fuse brain functional connectivity (BFC) and one-versus-the-rest filter-bank common spatial pattern (OVR-FBCSP) to improve the robustness of classification. The BFC features were extracted by phase locking value (PLV), representing the brain inter-regional interactions relevant to the MI, whilst the OVR-FBCSP is used to extract the spatial-frequency features related to the MI. These diverse features were then fed into a multi-kernel relevance vector machine (MK-RVM). The dataset with three motor imagery tasks (left hand MI, right hand MI, and feet MI) was used to assess the proposed method. Experimental results not only showed that the cascade structure of diverse feature fusion and MK-RVM achieved satisfactory classification performance (average accuracy: 83.81%, average kappa: 0.76), but also demonstrated that BFC plays a supplementary role in the MI classification. Moreover, the proposed method has a potential to be integrated into multiple MI online detection owing to the advantage of strong time-efficiency of RVM

    An Approach of One-vs-Rest Filter Bank Common Spatial Pattern and Spiking Neural Networks for Multiple Motor Imagery Decoding

    Get PDF
    Motor imagery (MI) is a typical BCI paradigm and has been widely applied into many aspects (e.g. brain-driven wheelchair and motor function rehabilitation training). Although significant achievements have been achieved, multiple motor imagery decoding is still unsatisfactory. To deal with this challenging issue, firstly, a segment of electroencephalogram was extracted and preprocessed. Secondly, we applied a filter bank common spatial pattern (FBCSP) with one-vs-rest (OVR) strategy to extract the spatio-temporal-frequency features of multiple MI. Thirdly, the F-score was employed to optimise and select these features. Finally, the optimized features were fed to the spiking neural networks (SNN) for classification. Evaluation was conducted on two public multiple MI datasets (Dataset IIIa of the BCI competition III and Dataset IIa of the BCI competition IV). Experimental results showed that the average accuracy of the proposed framework reached up to 90.09% (kappa: 0.868) and 81.33% (kappa: 0.751) on the two public datasets, respectively. The achieved performance (accuracy and kappa) was comparable to the best one of the compared methods. This study demonstrated that the proposed method can be used as an alternative approach for multiple MI decoding and it provided a potential solution for online multiple MI detection

    Information Theoretic Approaches for Motor-Imagery BCI Systems: Review and Experimental Comparison

    Get PDF
    Brain computer interfaces (BCIs) have been attracting a great interest in recent years. The common spatial patterns (CSP) technique is a well-established approach to the spatial filtering of the electroencephalogram (EEG) data in BCI applications. Even though CSP was originally proposed from a heuristic viewpoint, it can be also built on very strong foundations using information theory. This paper reviews the relationship between CSP and several information-theoretic approaches, including the Kullback–Leibler divergence, the Beta divergence and the Alpha-Beta log-det (AB-LD)divergence. We also revise other approaches based on the idea of selecting those features that are maximally informative about the class labels. The performance of all the methods will be also compared via experiments.Gobierno Español MICINN TEC2014-53103-
    corecore