62 research outputs found

    Mitigation of impulsive noise for SISO and MIMO G.fast system

    Get PDF
    To address the demand for high bandwidth data transmission over telephone transmission lines, International Telecommunication Union (ITU) has recently completed the fourth generation broadband (4GBB) copper access network technology, known as G.fast. Throughout this thesis, extensively investigates the wired broadband G.fast coding system and the novel impulsive noise reduction technique has been proposed to improve the performance of wired communications network in three different scenarios: single-line Discrete Multiple Tone (DMT)- G.fast system; a multiple input multiple-output (MIMO) DMTG.fast system, and MIMO G.fast system with different crosstalk cancellation methods. For each of these scenarios, however, Impulsive Noise (IN) is considered as the main limiting factor of performance system. In order to improve the performance of such systems, which use higher order QAM constellation such as G.fast system, this thesis examines the performance of DMT G.fast system over copper channel for six different higher signal constellations of M = 32, 128, 512, 2048, 8192 and 32768 in presence of IN modelled as the Middleton Class A (MCA) noise source. In contrast to existing work, this thesis presents and derives a novel equation of Optimal Threshold (OT) to improve the IN frequency domain mitigation methods applied to the G.fast standard over copper channel with higher QAM signal constellations. The second scenario, Multi-Line Copper Wire (MLCW) G.fast is adopted utilizing the proposed MLCW Chen model and is compared to a single line G-fast system by a comparative analysis in terms of Bit-Error-Rate(BER) performance of implementation of MLCW-DMT G.fast system. The third scenario, linear and non-linear crosstalk crosstalk interference cancellation methods are applied to MLCW G.fas and compared by a comparative analysis in terms of BER performance and the complexity of implementation.University of Technology for choosing me for their PhD scholarship and The Higher Committee For Education Development in Iraq(HCED

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    Coding Theory For Security And Reliability In Wireless Networks

    Full text link
    Wireless networks hold many applications and are an integral part of our lives. Security and reliability are extremely important in wireless networks. These networks must be reliable so that data can be conveyed from transmitters to receivers. Data sent across wireless networks must be kept confidential from unintended users and it is necessary that false packets generated by illegitimate users are rejected by the receiver. Another important task is for the network to determine which network components can be trusted and to what degree. The work presented in this dissertation addresses the security and reliability issues in wireless networks through the use of coding theory. The network is composed of numerous nodes and we consider a classical point to point communication problem. We explore the network reliability issue and develop two algorithms (exponential and polynomial time) which determine minimum redundancy and optimal symbol allocation to assure that the probability of successful decoding is greater than or equal to a specified threshold. The performance of the algorithms is compared with each other, and MDS, LT, and Raptor codes are compared using the exponential algorithm. We also consider the security problem of keeping a message confidential from an illegitimate eavesdropper in a multiple path network. Carefully crafted Raptor codes are shown to asymptotically achieve perfect secrecy and zero-error probability, and a bit allocation method across the paths is developed. Lastly, we look into the problem of determining the integrity of nodes in the network. In particular, we show how the malicious nodes can be localized in the network through the use of ReedMuller codes. The Reed-Muller codes represent the paths that are necessary in the network. For the case where a path is not realizable according to the network connectivity matrix, we conceived an algorithm to treat the non-realizable paths as erasures and decode to localize malicious nodes. The performance of the algorithm is compared to several techniques

    Telemetry coding study for the international magnetosphere explorers, mother/daughter and heliocentric missions. Volume 2: Final report

    Get PDF
    A convolutional coding theory is given for the IME and the Heliocentric spacecraft. The amount of coding gain needed by the mission is determined. Recommendations are given for an encoder/decoder system to provide the gain along with an evaluation of the impact of the system on the space network in terms of costs and complexity

    Multi-core architectures with coarse-grained dynamically reconfigurable processors for broadband wireless access technologies

    Get PDF
    Broadband Wireless Access technologies have significant market potential, especially the WiMAX protocol which can deliver data rates of tens of Mbps. Strong demand for high performance WiMAX solutions is forcing designers to seek help from multi-core processors that offer competitive advantages in terms of all performance metrics, such as speed, power and area. Through the provision of a degree of flexibility similar to that of a DSP and performance and power consumption advantages approaching that of an ASIC, coarse-grained dynamically reconfigurable processors are proving to be strong candidates for processing cores used in future high performance multi-core processor systems. This thesis investigates multi-core architectures with a newly emerging dynamically reconfigurable processor – RICA, targeting WiMAX physical layer applications. A novel master-slave multi-core architecture is proposed, using RICA processing cores. A SystemC based simulator, called MRPSIM, is devised to model this multi-core architecture. This simulator provides fast simulation speed and timing accuracy, offers flexible architectural options to configure the multi-core architecture, and enables the analysis and investigation of multi-core architectures. Meanwhile a profiling-driven mapping methodology is developed to partition the WiMAX application into multiple tasks as well as schedule and map these tasks onto the multi-core architecture, aiming to reduce the overall system execution time. Both the MRPSIM simulator and the mapping methodology are seamlessly integrated with the existing RICA tool flow. Based on the proposed master-slave multi-core architecture, a series of diverse homogeneous and heterogeneous multi-core solutions are designed for different fixed WiMAX physical layer profiles. Implemented in ANSI C and executed on the MRPSIM simulator, these multi-core solutions contain different numbers of cores, combine various memory architectures and task partitioning schemes, and deliver high throughputs at relatively low area costs. Meanwhile a design space exploration methodology is developed to search the design space for multi-core systems to find suitable solutions under certain system constraints. Finally, laying a foundation for future multithreading exploration on the proposed multi-core architecture, this thesis investigates the porting of a real-time operating system – Micro C/OS-II to a single RICA processor. A multitasking version of WiMAX is implemented on a single RICA processor with the operating system support

    Highly-configurable FPGA-based platform for wireless network research

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-164).Over the past few years, researchers have developed many cross-layer wireless protocols to improve the performance of wireless networks. Experimental evaluations of these protocols require both high-speed simulations and real-time on-air experimentations. Unfortunately, radios implemented in pure software are usually inadequate for either because they are typically two to three orders of magnitude slower than commodity hardware. FPGA-based platforms provide much better speeds but are quite difficult to modify because of the way high-speed designs are typically implemented by trading modularity for performance. Experimenting with cross-layer protocols requires a flexible way to convey information beyond the data itself from lower to higher layers, and a way for higher layers to configure lower layers dynamically and within some latency bounds. One also needs to be able to modify a layer's processing pipeline without triggering a cascade of changes. In this thesis, we discuss an alternative approach to implement a high-performance yet configurable radio design on an FPGA platform that satisfies these requirements. We propose that all modules in the design must possess two important design properties, namely latency-insensitivity and datadriven control, which facilitate modular refinements. We have developed Airblue, an FPGA-based radio, that has all these properties and runs at speeds comparable to commodity hardware. Our baseline design is 802.11g compliant and is able to achieve reliable communication for bit rates up to 24 Mbps. We show in the thesis that we can implement SoftRate, a cross-layer rate adaptation protocol, by modifying only 5.6% of the source code (967 lines). We also show that our modular design approach allows us to abstract the details of the FPGA platform from the main design, thus making the design portable across multiple FPGA platforms. By taking advantage of this virtualization capability, we were able to turn Airblue into a high-speed hardware software co-simulator with simulation speed beyond 20 Mbps.by Man Cheuk Ng.Ph.D

    Signal reconstruction in structures with two channels

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaEm sistemas ATM e transmissões em tempo real através de redes IP, os dados são transmitidos em pacotes de informação. Os pacotes perdidos ou muito atrasados levam à perda de informação em posições conhecidas (apagamentos). Contudo, em algumas situações as posições dos erros não são conhecidas e, portanto, a detecção dos erros tem que ser realizada usando um polinómio conhecido. A detecção e correcção de erros são estudadas para sinais digitais em códigos DFT em dois canais que apresentam muito melhor estabilidade que os respectivos códigos DFT num único canal. Para a estrutura de dois canais, um canal processa um código DFT normal, quanto que o outro canal inclui uma permutação, a razão principal para a melhoria na estabilidade. A permutação introduz aleatoriedade e é esta aleatoriedade que é responsável pela boa estabilidade destes códigos. O estudo dos códigos aleatórios vêm confirmar esta afirmação. Para sinais analógicos, foca-se a amostragem funcional e derivativa, onde um canal processa amostras do sinal e o outro processa amostras da derivada do sinal. A expansão sobreamostrada é apresentada e a recuperação de apagamentos é estudada. Neste caso, a estabilidade para a esturtura em dois canais quando a perda de amostras afecta ambos os canais é, em geral, muito pobre. Adicionalmente, a reconstrução de sinais tanto analógicos como digitais é tratada para o modelo do conversor integrate-and-fire. A reconstrução faz uso dos tempos de acção e de valores limites inerentes ao modelo e é viável por meio de um método iterativo baseado em projecções em conjuntos convexos (POCS).In ATM as in real time transmissions over IP networks, the data are transmitted packet by packet. Lost or highly delayed packets lead to lost information in known locations (erasures). However, in some situations the error locations are not known and, therefore, error detection must be performed using a known polynomial. Error detection and correction are studied for digital signals in two-channel DFT codes which presents a much better stability than their single channel counterparts. For the two-channel structure, one channel processes an ordinary DFT code, while the other channel includes an interleaver, the main reason for the improvement in stability. The interleaver introduces randomness and it is this randomness that is responsible for the good stability of these codes. The study of random codes helps confirm this statement. For analogical signals, the focus is given to function and derivative sampling, where one channel processes samples of the signal and the other processes samples of the derivative of the signal. The oversampled expansion is presented and erasure recovery is studied. In this case, the stability of the twochannel structure when sample loss affects both channels is, in general, very poor. Additionally, the reconstruction of analogical as well as digital signals is dealt with for the integrate-and-fire converter model. The reconstruction makes use of the firing times and the threshold values inherent to the model and is viable by means of an iterative method based on projections onto convex sets (POCS)
    corecore