1,764 research outputs found

    Normative EMG activation patterns of school-age children during gait

    Get PDF
    Gait analysis is widely used in clinics to study walking abnormalities for surgery planning, definition of rehabilitation protocols, and objective evaluation of clinical outcomes. Surface electromyography allows the study of muscle activity non-invasively and the evaluation of the timing of muscle activation during movement. The aim of this study was to present a normative dataset of muscle activation patterns obtained from a large number of strides in a population of 100 healthy children aged 6-11 years. The activity of Tibialis Anterior, Lateral head of Gastrocnemius, Vastus Medialis, Rectus Femoris and Lateral Hamstrings on both lower limbs was analyzed during a 2.5-min walk at free speed. More than 120 consecutive strides were analyzed for each child, resulting in approximately 28,000 strides. Onset and offset instants were reported for each observed muscle. The analysis of a high number of strides for each participant allowed us to obtain the most recurrent patterns of activation during gait, demonstrating that a subject uses a specific muscle with different activation modalities even in the same walk. The knowledge of the various activation patterns and of their statistics will be of help in clinical gait analysis and will serve as reference in the design of future gait studie

    IMAGE-IN: Interactive web-based multidimensional 3D visualizer for multi-modal microscopy images

    Get PDF
    Advances in microscopy hardware and storage capabilities lead to increasingly larger multidimensional datasets. The multiple dimensions are commonly associated with space, time, and color channels. Since “seeing is believing”, it is important to have easy access to user-friendly visualization software. Here we present IMAGE-IN, an interactive web-based multidimensional (N-D) viewer designed specifically for confocal laser scanning microscopy (CLSM) and focused ion beam scanning electron microscopy (FIB-SEM) data, with the goal of assisting biologists in their visualization and analysis tasks and promoting digital work-flows. This new visualization platform includes intuitive multidimensional opacity fine-tuning, shading on/off, multiple blending modes for volume viewers, and the ability to handle multichannel volumetric data in volume and surface views. The software accepts a sequence of image files or stacked 3D images as input and offers a variety of viewing options ranging from 3D volume/surface rendering to multiplanar reconstruction approaches. We evaluate the performance by comparing the loading and rendering timings of a heterogeneous dataset of multichannel CLSM and FIB-SEM images on two devices with installed graphic cards, as well as comparing rendered image quality between ClearVolume (the ImageJ open-source desktop viewer), Napari (the Python desktop viewer), Imaris (the closed-source desktop viewer), and our proposed IMAGE-IN web viewer

    The Scalable Brain Atlas: instant web-based access to public brain atlases and related content

    Get PDF
    The Scalable Brain Atlas (SBA) is a collection of web services that provide unified access to a large collection of brain atlas templates for different species. Its main component is an atlas viewer that displays brain atlas data as a stack of slices in which stereotaxic coordinates and brain regions can be selected. These are subsequently used to launch web queries to resources that require coordinates or region names as input. It supports plugins which run inside the viewer and respond when a new slice, coordinate or region is selected. It contains 20 atlas templates in six species, and plugins to compute coordinate transformations, display anatomical connectivity and fiducial points, and retrieve properties, descriptions, definitions and 3d reconstructions of brain regions. The ambition of SBA is to provide a unified representation of all publicly available brain atlases directly in the web browser, while remaining a responsive and light weight resource that specializes in atlas comparisons, searches, coordinate transformations and interactive displays.Comment: Rolf K\"otter sadly passed away on June 9th, 2010. He co-initiated this project and played a crucial role in the design and quality assurance of the Scalable Brain Atla

    Haptics for the development of fundamental rhythm skills, including multi-limb coordination

    Get PDF
    This chapter considers the use of haptics for learning fundamental rhythm skills, including skills that depend on multi-limb coordination. Different sensory modalities have different strengths and weaknesses for the development of skills related to rhythm. For example, vision has low temporal resolution and performs poorly for tracking rhythms in real-time, whereas hearing is highly accurate. However, in the case of multi-limbed rhythms, neither hearing nor sight are particularly well suited to communicating exactly which limb does what and when, or how the limbs coordinate. By contrast, haptics can work especially well in this area, by applying haptic signals independently to each limb. We review relevant theories, including embodied interaction and biological entrainment. We present a range of applications of the Haptic Bracelets, which are computer-controlled wireless vibrotactile devices, one attached to each wrist and ankle. Haptic pulses are used to guide users in playing rhythmic patterns that require multi-limb coordination. One immediate aim of the system is to support the development of practical rhythm skills and multi-limb coordination. A longer-term goal is to aid the development of a wider range of fundamental rhythm skills including recognising, identifying, memorising, retaining, analysing, reproducing, coordinating, modifying and creating rhythms – particularly multi-stream (i.e. polyphonic) rhythmic sequences. Empirical results are presented. We reflect on related work, and discuss design issues for using haptics to support rhythm skills. Skills of this kind are essential not just to drummers and percussionists but also to keyboards players, and more generally to all musicians who need a firm grasp of rhythm

    Multidimensional en-face OCT imaging of the retina.

    Get PDF
    Fast T-scanning (transverse scanning, en-face) was used to build B-scan or C-scan optical coherence tomography (OCT) images of the retina. Several unique signature patterns of en-face (coronal) are reviewed in conjunction with associated confocal images of the fundus and B-scan OCT images. Benefits in combining T-scan OCT with confocal imaging to generate pairs of OCT and confocal images similar to those generated by scanning laser ophthalmoscopy (SLO) are discussed in comparison with the spectral OCT systems. The multichannel potential of the OCT/SLO system is demonstrated with the addition of a third hardware channel which acquires and generates indocyanine green (ICG) fluorescence images. The OCT, confocal SLO and ICG fluorescence images are simultaneously presented in a two or a three screen format. A fourth channel which displays a live mix of frames of the ICG sequence superimposed on the corresponding coronal OCT slices for immediate multidimensional comparison, is also included. OSA ISP software is employed to illustrate the synergy between the simultaneously provided perspectives. This synergy promotes interpretation of information by enhancing diagnostic comparisons and facilitates internal correction of movement artifacts within C-scan and B-scan OCT images using information provided by the SLO channel

    Normative EMG activation patterns of school-age children during gait

    Get PDF
    Gait analysis is widely used in clinics to study walking abnormalities for surgery planning, definition of rehabilitation protocols, and objective evaluation of clinical outcomes. Surface electromyography allows the study of muscle activity non-invasively and the evaluation of the timing of muscle activation during movement. The aim of this study was to present a normative dataset of muscle activation patterns obtained from a large number of strides in a population of 100 healthy children aged 6-11 years. The activity of Tibialis Anterior, Lateral head of Gastrocnemius, Vastus Medialis, Rectus Femoris and Lateral Hamstrings on both lower limbs was analyzed during a 2.5-min walk at free speed. More than 120 consecutive strides were analyzed for each child, resulting in approximately 28,000 strides. Onset and offset instants were reported for each observed muscle. The analysis of a high number of strides for each participant allowed us to obtain the most recurrent patterns of activation during gait, demonstrating that a subject uses a specific muscle with different activation modalities even in the same walk. The knowledge of the various activation patterns and of their statistics will be of help in clinical gait analysis and will serve as reference in the design of future gait studies

    Using Advanced Learning Technologies with University Students: An Analysis with Machine Learning Techniques

    Get PDF
    The use of advanced learning technologies (ALT) techniques in learning management systems (LMS) allows teachers to enhance self-regulated learning and to carry out the personalized monitoring of their students throughout the teaching–learning process. However, the application of educational data mining (EDM) techniques, such as supervised and unsupervised machine learning, is required to interpret the results of the tracking logs in LMS. The objectives of this work were (1) to determine which of the ALT resources would be the best predictor and the best classifier of learning outcomes, behaviours in LMS, and student satisfaction with teaching; (2) to determine whether the groupings found in the clusters coincide with the students’ group of origin. We worked with a sample of third-year students completing Health Sciences degrees. The results indicate that the combination of ALT resources used predict 31% of learning outcomes, behaviours in the LMS, and student satisfaction. In addition, student access to automatic feedback was the best classifier. Finally, the degree of relationship between the source group and the found cluster was medium (C = 0.61). It is necessary to include ALT resources and the greater automation of EDM techniques in the LMS to facilitate their use by teachers.This research was funded by the MINISTERIO DE CIENCIA E INNOVACIÓN, grant number PID2020-117111RB-I00

    Distributed Sensing and Stimulation Systems Towards Sense of Touch Restoration in Prosthetics

    Get PDF
    Modern prostheses aim at restoring the functional and aesthetic characteristics of the lost limb. To foster prosthesis embodiment and functionality, it is necessary to restitute both volitional control and sensory feedback. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing high-fidelity spatial information. To provide this type of feedback in prosthetics, it is necessary to sense tactile information from artificial skin placed on the prosthesis and transmit tactile feedback above the amputation in order to map the interaction between the prosthesis and the environment. This thesis proposes the integration of distributed sensing systems (e-skin) to acquire tactile sensation, and non-invasive multichannel electrotactile feedback and virtual reality to deliver high-bandwidth information to the user. Its core focus addresses the development and testing of close-loop sensory feedback human-machine interface, based on the latest distributed sensing and stimulation techniques for restoring the sense of touch in prosthetics. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives and the used methodology and contributions; as well as three studies distributed over stimulation system level and sensing system level. The first study presents the development of close-loop compensatory tracking system to evaluate the usability and effectiveness of electrotactile sensory feedback in enabling real-time close-loop control in prosthetics. It examines and compares the subject\u2019s adaptive performance and tolerance to random latencies while performing the dynamic control task (i.e. position control) and simultaneously receiving either visual feedback or electrotactile feedback for communicating the momentary tracking error. Moreover, it reported the minimum time delay needed for an abrupt impairment of users\u2019 performance. The experimental results have shown that electrotactile feedback performance is less prone to changes with longer delays. However, visual feedback drops faster than electrotactile with increased time delays. This is a good indication for the effectiveness of electrotactile feedback in enabling close- loop control in prosthetics, since some delays are inevitable. The second study describes the development of a novel non-invasive compact multichannel interface for electrotactile feedback, containing 24 pads electrode matrix, with fully programmable stimulation unit, that investigates the ability of able-bodied human subjects to localize the electrotactile stimulus delivered through the electrode matrix. Furthermore, it designed a novel dual parameter -modulation (interleaved frequency and intensity) and compared it to conventional stimulation (same frequency for all pads). In addition and for the first time, it compared the electrotactile stimulation to mechanical stimulation. More, it exposes the integration of virtual prosthesis with the developed system in order to achieve better user experience and object manipulation through mapping the acquired real-time collected tactile data and feedback it simultaneously to the user. The experimental results demonstrated that the proposed interleaved coding substantially improved the spatial localization compared to same-frequency stimulation. Furthermore, it showed that same-frequency stimulation was equivalent to mechanical stimulation, whereas the performance with dual-parameter modulation was significantly better. The third study presents the realization of a novel, flexible, screen- printed e-skin based on P(VDF-TrFE) piezoelectric polymers, that would cover the fingertips and the palm of the prosthetic hand (particularly the Michelangelo hand by Ottobock) and an assistive sensorized glove for stroke patients. Moreover, it developed a new validation methodology to examine the sensors behavior while being solicited. The characterization results showed compatibility between the expected (modeled) behavior of the electrical response of each sensor to measured mechanical (normal) force at the skin surface, which in turn proved the combination of both fabrication and assembly processes was successful. This paves the way to define a practical, simplified and reproducible characterization protocol for e-skin patches In conclusion, by adopting innovative methodologies in sensing and stimulation systems, this thesis advances the overall development of close-loop sensory feedback human-machine interface used for restoration of sense of touch in prosthetics. Moreover, this research could lead to high-bandwidth high-fidelity transmission of tactile information for modern dexterous prostheses that could ameliorate the end user experience and facilitate it acceptance in the daily life
    corecore