39 research outputs found

    Contents lists available at ScienceDirect Pattern Recognition

    Get PDF
    journal homepage: www.elsevier.com/locate/pr Edge-preserving smoothing using a similarity measure in adaptive geodesi

    Nonlocal smoothing and adaptive morphology for scalar- and matrix-valued images

    Get PDF
    In this work we deal with two classic degradation processes in image analysis, namely noise contamination and incomplete data. Standard greyscale and colour photographs as well as matrix-valued images, e.g. diffusion-tensor magnetic resonance imaging, may be corrupted by Gaussian or impulse noise, and may suffer from missing data. In this thesis we develop novel reconstruction approaches to image smoothing and image completion that are applicable to both scalar- and matrix-valued images. For the image smoothing problem, we propose discrete variational methods consisting of nonlocal data and smoothness constraints that penalise general dissimilarity measures. We obtain edge-preserving filters by the joint use of such measures rich in texture content together with robust non-convex penalisers. For the image completion problem, we introduce adaptive, anisotropic morphological partial differential equations modelling the dilation and erosion processes. They adjust themselves to the local geometry to adaptively fill in missing data, complete broken directional structures and even enhance flow-like patterns in an anisotropic manner. The excellent reconstruction capabilities of the proposed techniques are tested on various synthetic and real-world data sets.In dieser Arbeit beschäftigen wir uns mit zwei klassischen Störungsquellen in der Bildanalyse, nämlich mit Rauschen und unvollständigen Daten. Klassische Grauwert- und Farb-Fotografien wie auch matrixwertige Bilder, zum Beispiel Diffusionstensor-Magnetresonanz-Aufnahmen, können durch Gauß- oder Impulsrauschen gestört werden, oder können durch fehlende Daten gestört sein. In dieser Arbeit entwickeln wir neue Rekonstruktionsverfahren zum zur Bildglättung und zur Bildvervollständigung, die sowohl auf skalar- als auch auf matrixwertige Bilddaten anwendbar sind. Zur Lösung des Bildglättungsproblems schlagen wir diskrete Variationsverfahren vor, die aus nichtlokalen Daten- und Glattheitstermen bestehen und allgemeine auf Bildausschnitten definierte Unähnlichkeitsmaße bestrafen. Kantenerhaltende Filter werden durch die gemeinsame Verwendung solcher Maße in stark texturierten Regionen zusammen mit robusten nichtkonvexen Straffunktionen möglich. Für das Problem der Datenvervollständigung führen wir adaptive anisotrope morphologische partielle Differentialgleichungen ein, die Dilatations- und Erosionsprozesse modellieren. Diese passen sich der lokalen Geometrie an, um adaptiv fehlende Daten aufzufüllen, unterbrochene gerichtet Strukturen zu schließen und sogar flussartige Strukturen anisotrop zu verstärken. Die ausgezeichneten Rekonstruktionseigenschaften der vorgestellten Techniken werden anhand verschiedener synthetischer und realer Datensätze demonstriert

    Registration and analysis of dynamic magnetic resonance image series

    Get PDF
    Cystic fibrosis (CF) is an autosomal-recessive inherited metabolic disorder that affects all organs in the human body. Patients affected with CF suffer particularly from chronic inflammation and obstruction of the airways. Through early detection, continuous monitoring methods, and new treatments, the life expectancy of patients with CF has been increased drastically in the last decades. However, continuous monitoring of the disease progression is essential for a successful treatment. The current state-of-the-art method for lung disease detection and monitoring is computed tomography (CT) or X-ray. These techniques are ill-suited for the monitoring of disease progressions because of the ionizing radiation the patient is exposed during the examination. Through the development of new magnetic resonance imaging (MRI) sequences and evaluation methods, MRI is able to measure physiological changes in the lungs. The process to create physiological maps, i.e. ventilation and perfusion maps, of the lungs using MRI can be split up into three parts: MR-acquisition, image registration, and image analysis. In this work, we present different methods for the image registration part and the image analysis part. We developed a graph-based registration method for 2D dynamic MR image series of the lungs in order to overcome the problem of sliding motion at organ boundaries. Furthermore, we developed a human-inspired learning-based registration method. Here, the registration is defined as a sequence of local transformations. The sequence-based approach combines the advantage of dense transformation models, i.e. large space of transformations, and the advantage of interpolating transformation models, i.e. smooth local transformations. We also developed a general registration framework called Autograd Image Registration Laboratory (AIRLab), which performs automatic calculation of the gradients for the registration process. This allows rapid prototyping and an easy implementation of existing registration algorithms. For the image analysis part, we developed a deep-learning approach based on gated recurrent units that are able to calculate ventilation maps with less than a third of the number of images of the current method. Automatic defect detection in the estimated MRI ventilation and perfusion maps is essential for the clinical routine to automatically evaluate the treatment progression. We developed a weakly supervised method that is able to infer a pixel-wise defect segmentation by using only a continuous global label during training. In this case, we directly use the lung clearance index (LCI) as a global weak label, without any further manual annotations. The LCI is a global measure to describe ventilation inhomogeneities of the lungs and is obtained by a multiple breath washout test

    A TV flow based local scale estimate and its application to texture discrimination

    Get PDF
    This paper presents a local region based scale measure, which exploits properties of a certain type of nonlinear diffusion, the so-called total variation (TV) flow. During the signal evolution by means of TV flow, pixels change their value with a speed that is inversely proportional to the size of the region they belong to. From this evolution speed one can derive a local scale estimate based on regions instead of derivative filters. Main motivation for such a scale measure is its application to texture discrimination, in particular the construction of an alternative to Gabor filters. When the scale estimate is combined with the components of the structure tensor, which provides orientation information, it yields a texture feature space of only four dimensions. Like Gabor features, this sparse feature space discriminates textures by means of their orientation and scale, yet the representation of orientation and scale is less redundant. The quality of the feature space containing the new scale measure is evaluated in texture segmentation experiments by comparing results to those achieved with Gabor filters. It turns out that one can gain a total speedup of factor 2 without loosing any quality concerning the discrimination of textures

    Mathematical Imaging and Surface Processing

    Get PDF
    Within the last decade image and geometry processing have become increasingly rigorous with solid foundations in mathematics. Both areas are research fields at the intersection of different mathematical disciplines, ranging from geometry and calculus of variations to PDE analysis and numerical analysis. The workshop brought together scientists from all these areas and a fruitful interplay took place. There was a lively exchange of ideas between geometry and image processing applications areas, characterized in a number of ways in this workshop. For example, optimal transport, first applied in computer vision is now used to define a distance measure between 3d shapes, spectral analysis as a tool in image processing can be applied in surface classification and matching, and so on. We have also seen the use of Riemannian geometry as a powerful tool to improve the analysis of multivalued images. This volume collects the abstracts for all the presentations covering this wide spectrum of tools and application domains

    Automating the multimodal analysis of musculoskeletal imaging in the presence of hip implants

    Get PDF
    In patients treated with hip arthroplasty, the muscular condition and presence of inflammatory reactions are assessed using magnetic resonance imaging (MRI). As MRI lacks contrast for bony structures, computed tomography (CT) is preferred for clinical evaluation of bone tissue and orthopaedic surgical planning. Combining the complementary information of MRI and CT could improve current clinical practice for diagnosis, monitoring and treatment planning. In particular, the different contrast of these modalities could help better quantify the presence of fatty infiltration to characterise muscular condition after hip replacement. In this thesis, I developed automated processing tools for the joint analysis of CT and MR images of patients with hip implants. In order to combine the multimodal information, a novel nonlinear registration algorithm was introduced, which imposes rigidity constraints on bony structures to ensure realistic deformation. I implemented and thoroughly validated a fully automated framework for the multimodal segmentation of healthy and pathological musculoskeletal structures, as well as implants. This framework combines the proposed registration algorithm with tailored image quality enhancement techniques and a multi-atlas-based segmentation approach, providing robustness against the large population anatomical variability and the presence of noise and artefacts in the images. The automation of muscle segmentation enabled the derivation of a measure of fatty infiltration, the Intramuscular Fat Fraction, useful to characterise the presence of muscle atrophy. The proposed imaging biomarker was shown to strongly correlate with the atrophy radiological score currently used in clinical practice. Finally, a preliminary work on multimodal metal artefact reduction, using an unsupervised deep learning strategy, showed promise for improving the postprocessing of CT and MR images heavily corrupted by metal artefact. This work represents a step forward towards the automation of image analysis in hip arthroplasty, supporting and quantitatively informing the decision-making process about patient’s management

    Slepian Wavelets for the Analysis of Incomplete Data on Manifolds

    Get PDF
    Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions. In this thesis, a new wavelet basis is designed for datasets like these. Although many definitions of spherical convolutions exist, none fully emulate the Euclidean definition. A novel spherical convolution is developed, designed to tackle the shortcomings of existing methods. The so-called sifting convolution exploits the sifting property of the Dirac delta and follows by the inner product of a function with the translated version of another. This translation operator is analogous to the Euclidean translation in harmonic space and exhibits some useful properties. In particular, the sifting convolution supports directional kernels; has an output that remains on the sphere; and is efficient to compute. The convolution is entirely generic and thus may be used with any set of basis functions. An application of the sifting convolution with a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering. Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data

    Von Pixeln zu Regionen: Partielle Differentialgleichungen in der Bildanalyse

    Get PDF
    This work deals with applications of partial differential equations in image analysis. The focus is thereby on applications that can be used for image segmentation. This includes, among other topics, nonlinear diffusion, motion analysis, and image segmentation itself. From each chapter to the next, the methods are directed more and more to image segmentation. While Chapter 2 presents general denoising and simplification techniques, Chapter 4 already addresses the somewhat more special task to extract texture and motion from images. This is in order to employ the resulting features to the partitioning of images finally in Chapter 5. Thus, in this work, one can clearly make out the thread from the raw image data, the pixels, to the more abstract descriptions of images by means of regions. The fact that image processing techniques can also be useful in research areas besides conventional images is shown in Chapter 3. They are used here in order to improve numerical methods for conservation laws in physics. The work conceptually focuses on using as many different features as possible for segmentation. This includes besides image-driven features like texture and motion the knowledge-based information of a three-dimensional object model. The basic idea of this concept is to provide a preferably wide basis of information for separating object regions and thus increasing the number of situations in which the method yields satisfactory segmentation results. A further basic concept pursued in this thesis is to employ coarse-to-fine strategies. They are used both for motion estimation in Chapter 4 and for segmentation in Chapter 5. In both cases one has to deal with optimization problems that contain many local optima. Conventional local optimization therefore usually leads to results the quality of which heavily depends on the initialization. This situation can often be eased, if the optimization problem is first significantly simplified. One then tries to solve the original problem by continuously increasing the problem complexity. Apart from this, the work contains several essential technical novelties. In Chapter 2, nonlinear diffusion with unbounded diffusivities is considered. This also includes total variation flow(TV flow). A thorough analysis of TV flow thereby leads to an analytic solution that allows to show that TV flow is in the space-discrete, one-dimensional setting exactly identical to the corresponding variational approach called TV regularization. Moreover, various different numerical methods are investigated in order to determine their suitability for diffusion filters with unbounded diffusivities. TV flow can be regarded as an alternative to Gaussian smoothing, though there is the significant difference of TV flow being discontinuity preserving. By replacing Gaussian smoothing by TV flow, one can develop new discontinuity preserving versions of well-known operators such as the structure tensor. TV flow is also employed in Chapter 3 where the goal is to improve numerical schemes for the approximation of hyperbolic conservation laws by means of image processing techniques. The role of TV flow in this scope is to remove oscillations of a second order method. In an alternative approach, the approximation performance of a first order method is improved by a nonlinear inverse diffusion filter. The underlying concept is to remove exactly the amount of numerical diffusion that actually stabilizes the scheme. By means of an appropriate stabilization of the inverse diffusion process it is possible to preserve the positive stability properties of the original method. III IV Abstract Chapter 4 is separated into two parts. The first part deals with the extraction of texture features, whereas the second part focuses on motion estimation. Goal of the texture extraction method is to derive a feature space that is as low-dimensional as possible but still provides very good discrimination properties. The basic framework of this feature space is the structure tensor based on TV flow presented earlier in Chapter 2. It contains the orientation, magnitude, and homogeneity of a texture and therefore provides already very important features for texture discrimination. Additionally, a region based local scale measure is developed that supplements the size of texture elements to the feature space. This feature space is used later in Chapter 5 for texture segmentation. Two motion estimation methods are introduced in Chapter 4. One of them is based on the structure tensor from Section 2 and improves existing local methods. The other technique is based on a global variational approach. It differs from usual variational approaches by the use of a gradient constancy assumption. This assumption provides the method with the capability to yield good estimation results even in the presence of small local or global variations of illumination. Besides this novelty, the combination of non-linearized constancy assumptions and a coarse-to-fine strategy yields a numerical scheme that provides for the first time a well founded theory for the very successful warping methods. The described technique leads to results that are generally more accurate than all results presented in literature so far. As already mentioned, goal of the image segmentation approach in Chapter 5 is mainly to integrate the features derived in Chapter 4 and to utilize a coarse-to-fine strategy. This is done in the framework of region based, implicit active contour models which are set up on the concept of level sets. The involved region models are extended by nonparametric as well as local region statistics. A further novelty is the extension of the level set concept to multiple regions. The optimum number of regions is thereby estimated by a hierarchical approach. This is a considerable extension of conventional active contour models, which are usually restricted to two regions. Moreover, the idea to use three-dimensional object knowledge for segmentation is presented. The proposed method uses the extracted contour for estimating the pose of the object, while in return the projected object model supports the segmentation. The implementation of this idea as described in this thesis is only at an early stage. Plenty of interesting aspects can be derived from this concept that are to be investigated in the future.Die vorliegenden Arbeit beschäftigt sich mit Anwendungen partieller Differentialgleichungen in der Bildanalyse. Dabei stehen Anwendungen im Vordergrund, die sich zur Bildsegmentierung verwenden lassen. Dies schließt unter anderem nichtlineare Diffusion, Bewegungsschätzung und die Bildsegmentierung selbst ein. Von Kapitel zu Kapitel werden die verwendeten Methoden dabei mehr und mehr auf die Bildsegmentierung ausgerichtet. Werden in Kapitel 2 noch allgemeine Entrauschungs- und Bildvereinfachungsoperationen vorgestellt, behandelt Kapitel 4 die schon etwas speziellere Aufgabe, Textur und Bewegung aus Bildern zu extrahieren, um entsprechende Merkmale schließlich in Kapitel 5 zur Segmentierung von Bildern verwenden zu können. Dabei zieht sich der Weg von den rohen Bilddaten, den Pixeln, hin zur abstrakteren Beschreibung von Bildern mit Hilfe von Regionen als roter Faden durch die gesamte Arbeit. Dass sich Bildverarbeitungstechniken auch in Forschungsgebieten fern herkömmlicher Bilder als nützlich erweisen können, zeigt Kapitel 3. Hier werden Bildverarbeitungstechniken zur Verbesserung numerischer Verfahren für Erhaltungsgleichungen der Physik verwendet. Konzeptionell legt diese Arbeit Wert darauf, möglichst viele verschiedene Merkmale zur Segmentierung zu verwenden. Darunter fallen neben den bildgestützten Merkmalen wie Textur und Bewegung auch die wissensbasierte Information eines dreidimensionalen Oberflächenmodells. Die prinzipielle Idee hinter diesem Konzept ist, die Entscheidungsgrundlage zur Trennung von Objektregionen auf eine möglichst breite Informationsbasis zu stellen und somit die Anzahl der Situationen, in denen das Verfahren zufriedenstellende Segmentierungsergebnisse liefert, zu erhöhen. Ein weiteres Grundkonzept, das in dieser Arbeit verfolgt wird, ist die Verwendung von Coarse- To-Fine-Strategien. Sie kommen sowohl bei der Bewegungsschätzung in Kapitel 4 als auch in der Segmentierung in Kapitel 5 zum Einsatz. In beiden Fällen hat man es mit Optimierungsproblemen zu tun, die viele lokale Optima aufweisen. Herkömmliche lokale Optimierung führt daher meist zu Ergebnissen, deren Qualität stark von der Initialisierung abhängt. Diese Situation lässt sich häufig entschärfen, wenn man das entsprechende Optimierungsproblem zunächst deutlich vereinfacht und erst nach und nach das ursprüngliche Problem zu lösen versucht. Daneben enthält diese Arbeit viele wesentliche technische Neuerungen. In Kapitel 2 wird nichtlineare Diffusion mit unbeschränkten Diffusivitäten betrachtet, was auch Total-Variation- Flow (TV-Flow) mit einschließt. Eine genaue Analyse von TV-Flow führt dabei zu einer analytischen Lösung, mit Hilfe derer man zeigen kann, dass TV-Flow im diskreten, eindimensionalen Fall exakt identisch mit dem ensprechenden Variationsansatz der TV-Regularisierung ist. Desweiteren werden verschiedene numerische Verfahren in Bezug auf ihre Eignung für Diffusionsfilter mit unbeschränkten Diffusivitäten untersucht. Man kann TV-Flow als eine Alternative zur Gaußglättung ansehen, mit dem entscheidenden Unterschied, dass TV-Flow kantenerhaltend ist. Durch Ersetzen von Gaußglättung durch TV-Flow lassen sich so diskontinuitätserhaltende Varianten bekannter Operatoren wie etwa des Strukturtensors entwickeln. Auch in Kapitel 3 kommt TV-Flow zum Einsatz, wenn es darum geht, numerische Verfahren zur Approximation hyperbolischer Erhaltungsgleichungen durch Bildverarbeitungsmethoden zu verbessern. TV-Flow fällt dabei die Rolle zu, Oszillationen eines Verfahrens zweiter Ordnung zu beseitigen. In einem alternativen Ansatz werden die Approximationseigenschaften eines Verfahrens erster Ordnung durch einen nichtlinearen Rückwärtsdiffusionsfilter verbessert, indem die numerische Diffusion, die das Verfahren eigentlich stabilisiert, gezielt wieder entfernt wird. Dabei gelingt es durch eine geeignete Stabilisierung der Rückwärtsdiffusion, die positiven Stabilitätseigenschaften des Originalverfahrens zu erhalten. Kapitel 4 spaltet sich in zwei Teile auf, wobei der erste Teil von der Extrahierung von Texturmerkmalen handelt, während sich der zweite Teil auf Bewegungsschätzung konzentriert. Bei den Texturmerkmalen besteht dabei das Ziel, einen möglichst niederdimensionalen Merkmalsraum zu kreieren, der dennoch sehr gute Diskriminierungseigenschaften besitzt. Das Grundgerüst dieses Merkmalsraums stellt dabei der in Kapitel 2 vorgestellte, auf TV-Flow basierende Strukturtensor dar. Er beschreibt mit der Orientierung, Stärke und Homogenität der Texturierung bereits sehr wichtige Merkmale einer Textur. Daneben wird ein regionenbasiertes, lokales Skalenmaß entwickelt, das zusätzlich die Größe von Texturelementen als Merkmal einbringt. Diese Texturmerkmale werden später in Kapitel 5 zur Textursegmentierung verwendet. Zur Bewegungsschätzung werden zwei Verfahren vorgestellt. Das eine basiert auf dem in Kapitel 2 eingeführten Strukturtensor und stellt eine Verbesserung vorhandener lokaler Methoden dar. Das andere Verfahren basiert auf einem globalen Variationsansatz und unterscheidet sich von üblichen Variationsansätzen durch die Verwendung einer Gradientenkonstanzannahme. Diese stattet das Verfahren mit der Fähigkeit aus, auch beim Vorhandensein kleinerer lokaler oder globaler Helligkeitsschwankungen gute Schätzergebnisse zu liefern. Daneben ergibt sich aus der Kombination von nicht-linearisierten Konstanzannahmen und einer Coarse-To-Fine-Strategie ein numerisches Schema, das erstmals eine fundierte Theorie zu den sehr erfolgreichen Warping-Verfahren zur Verfügung stellt. Mit der beschriebenen Technik werden Ergebnisse erzielt, die grundsätzlich präziser sind als alles was bisher in der Literatur vorgestellt wurde. Bei der eigentlichen Bildsegmentierung in Kapitel 5 geht es schließlich, wie bereits erwähnt, hauptsächlich um die Einbringung der in Kapitel 4 entwickelten zusätzlichen Merkmale und um die Verwendung einer Coarse-To-Fine-Strategie. Dies geschieht im Rahmen von regionenbasierten, impliziten Aktiv-Kontur-Modellen, die auf dem Konzept der Level-Sets aufbauen. Dabei werden die Regionenmodelle um nichtparametrische und lokale Beschreibungen der Regionenstatistik erweitert. Eine weitere Neuerung ist die Erweiterung des Level-Set-Konzepts auf mehrere Regionen. In einem teils hierarchischen Ansatz wird dabei auch die optimale Anzahl der Regionen geschätzt, was eine erhebliche Erweiterung im Vergleich zu herkömmlichen Aktiv-Kontur- Modellen darstellt. Außerdem wird die Idee vorgestellt, dreidimensionales Objektwissen in der Segmentierung zu verwenden, indem anhand der Segmentierung die Lage des Objekts geschätzt wird und umgekehrt wiederum das projizierte Objektmodell die Segmentierung unterstützt. Die Umsetzung dieser Idee, wie sie in dieser Arbeit beschrieben wird, steht dabei erst am Anfang. Für die Zukunft ergeben sich hieraus noch viele interessanter Aspekte, die es zu untersuchen gilt
    corecore