3 research outputs found

    Luminescent CdSe Quantum Dot Arrays for Rapid Sensing of Explosive Taggants

    Get PDF
    Chemical sensors based on fluorescent quantum dots have attracted intense interest because of their excellent optical and electronic properties compared to the routinely employed fluorescent organic dyes. This study reports a CdSe QD-polymer-based luminescent chemosensor, which is based on an array containing either green-emitting or red-emitting CdSe QDs embedded in polycaprolactone as a polymer host matrix. We evaluate the sensing capability of the nanocomposites by exposing both sensors to vapors of explosive taggants, explosive-like molecules, and some common solvents. Both nanocomposites exhibit a very fast response time of <30 s. The limit of detection of the sensors for 3-nitrotoluene, 4-nitrotoluene 2,3-dimethyl-2,3-dinitrobutane, and picric acid was found to be 0.055, 2.7, 0.7 and 916.4 ng, respectively. The sensor array constitutes a powerful tool to discriminate between explosive taggants (3-nitrotoluene, 4-nitrotoluene, and 2,3-dimethyl-2,3-dinitrobutane) and shows specific molecular recognition toward picric acid. This type of miniaturized luminescent QD-based nanocomposites might form the basis of a sensing platform technology to perform effective chemical detection and identification of explosive taggants preblast and postblast

    Optical hybrid nanocomposite sensors for selective explosive detection

    Get PDF
    Durante la 煤ltima d茅cada, la detecci贸n de artefactos explosivos improvisados (IED) tanto en el 谩mbito militar como civil se ha convertido en una prioridad estrat茅gica en la seguridad nacional debido a la creciente amenaza terrorista. Aunque las t茅cnicas convencionales, como la cromatograf铆a de gases acoplada a la espectrometr铆a de masas o la difracci贸n de rayos X, muestran ventajas notables, como una alta sensibilidad y selectividad, la mayor铆a de ellas tienen muchos inconvenientes, como, por ejemplo, procesos lentos e instrumentaci贸n costosa, compleja y de grandes dimensiones, que limitan el muestreo en continuo y en tiempo real. Por esa raz贸n, existe una investigaci贸n constante para encontrar una plataforma de detecci贸n adecuada para diferentes entornos. El papel de la nanociencia ha sido determinante en gran medida en el desarrollo de sensores qu铆micos mejorando su rendimiento debido a sus excelentes propiedades. El dise帽o de sensores port谩tiles, f谩ciles de fabricar y de bajo coste con un l铆mite de detecci贸n (LOD) bajo, buena selectividad, alta sensibilidad y corto tiempo de respuesta es un gran desaf铆o. El objetivo de esta tesis doctoral es sintetizar diferentes plataformas 贸pticas de detecci贸n de estado s贸lido basadas en un nanocompuesto formado por diferentes nanopart铆culas embebidas en el interior de una matriz polim茅rica para la detecci贸n y cuantificaci贸n de algunos marcadores explosivos y mol茅culas similares a explosivos en fase de vapor. En primer lugar, se sintetiz贸 un sensor plasm贸nico basado en un nanocompuesto de nanopart铆culas de Ag (NPs) embebido en un pol铆mero impreso molecularmente (MIP) para la detecci贸n selectiva de 3-NT, que es un marcador explosivo para 2,4,6-trinitrotolueno. En nuestro enfoque, la s铆ntesis in situ de Ag NP y la impresi贸n molecular con 3-NT como plantilla tienen lugar simult谩neamente dentro de la pel铆cula delgada de polietilenimina (PEI) durante el paso de calentamiento, despu茅s del recubrimiento por rotaci贸n. Se demostraron las capacidades de detecci贸n qu铆mica de los nanocompuestos de Ag-PEI MIP hacia el 3-NT utilizando la disminuci贸n de intensidad de la banda de resonancia de plasm贸n de superficie localizada como par谩metro de detecci贸n. Adem谩s, la estrategia de impresi贸n molecular da como resultado una mejora de la sensibilidad y selectividad del sensor a 3-NT. Como resultado, estos sensores plasm贸nicos se pueden implementar f谩cilmente con plataformas de lectura port谩tiles en robots remotos de detecci贸n de explosivos y eliminaci贸n de bombas. En la segunda parte, se utilizaron sensores qu铆micos basados en nanopart铆culas fluorescentes como puntos cu谩nticos (QDs) y perovskitas de haluros met谩licos (PVKs) debido a sus excelentes propiedades 贸pticas y electr贸nicas. Uno de los sensores se basa en una matriz que contiene QDs de CdSe de emisi贸n en el verde o de emisi贸n en el rojo embebidos en policaprolactona (PCL) como matriz polim茅rica. Se evalu贸 la capacidad de detecci贸n de los nanocompuestos al exponer ambos sensores a vapores de marcadores explosivos, mol茅culas similares a explosivos y algunos solventes comunes. Estos mostraron un tiempo de respuesta muy r谩pido (<30 s) y un LOD bajo. Adem谩s, la matriz de sensores constituy贸 una poderosa herramienta para discriminar entre marcadores explosivos (3-nitrotolueno, 4-nitrotolueno y 2,3-dimetil-2,3-dinitrobutano) y exhibi贸 un reconocimiento molecular espec铆fico hacia el 谩cido p铆crico. El otro sensor se basa en un nanocompuesto de nanocristales (NC) de CsPbBr3 incrustados en un pol铆mero impreso molecularmente (MIP) utilizando 3-nitrotolueno (3-NT) o nitrometano (NM) como mol茅culas plantilla. El proceso de impresi贸n molecular ocurre dentro del nanocompuesto de CsPbBr3-PCL durante la etapa de calentamiento despu茅s del recubrimiento por rotaci贸n. La capacidad de detecci贸n de los sensores MIP se evalu贸 y compar贸 con la del pol铆mero no impreso (NIP) mediante el control de la fotoluminiscencia (PL) tras la exposici贸n a vapores de diferentes marcadores explosivos, mol茅culas que contienen grupos nitro y algunos disolventes org谩nicos. Los sensores muestran un tiempo de respuesta r谩pido a los analitos por debajo de los 5 s. Adem谩s, la impresi贸n molecular mejora la respuesta PL de los sensores MIP y la especificidad de 3-NT. Tambi茅n se exhibe una excelente selectividad hacia las mol茅culas que contienen nitro, particularmente cuando se usa NM como mol茅cula molde. A la luz de los resultados, esta tesis doctoral propone que estas plataformas de detecci贸n son candidatas potenciales para la detecci贸n efectiva de explosivos en fase de vapor.Over the last decade, the detection of improvised explosive devices (IEDs) in both military and civil fields has become a strategic priority in homeland security due to the increasing terrorist threat. Although conventional techniques such as gas chromatography coupled to mass spectrometry or X-ray diffraction show notable advantages such as high sensitivity and selectivity, most of them have many drawbacks such as time-consuming processes and expensive, complex, and cumbersome instrumentation, which limit continuous and real-time sampling. For that reason, there is constant research for a sensing platform suitable for different environments. The role of nanoscience has been greatly determining the development of chemical sensors with enhanced performance because of their outstanding properties. The design of low-cost, easy-to-fabricate and portable sensors with a low limit of detection (LOD), good selectivity, high sensitivity and short response time is very challenging. The goal of this PhD thesis is to synthesize different optical solid-state sensing platforms based on a nanocomposite of different nanoparticles embedded in a polymer matrix for the detection and quantification of some explosive taggants and explosive-like molecules in the vapour phase. Firstly, the synthesis of a plasmonic sensor based on a nanocomposite of Ag nanoparticles (NPs) embedded in a molecularly imprinted polymer (MIP) for selective detection of 3-NT, an explosive taggant for 2,4,6-trinitrotoluene. In our approach, the in-situ synthesis of Ag NPs and the molecular imprinting with 3-NT as a template take place simultaneously inside the polyethyleneimine (PEI) thin film during the baking step after spin coating. The chemosensing capabilities of Ag-PEI MIP nanocomposites to 3-NT using the localized surface plasmon resonance band intensity decay as a sensing parameter were demonstrated. Moreover, the molecular imprinting approach results in an enhancement of the sensor sensitivity and selectivity to 3-NT. As a result, these plasmonic sensors can be easily implemented with portable reading platforms into remote explosive detection and bomb disposal robots. In the second part, chemical sensors based on fluorescent nanoparticles such as quantum dots (QDs) and metal halide perovskites (PVKs) have been used because of their excellent optical and electronic properties. One of the sensors is based on an array containing either green-emitting or red-emitting CdSe QDs embedded in polycaprolactone (PCL) as a polymer host matrix. The sensing capability of the nanocomposites by exposing both sensors to vapours of explosive taggants, explosive-like molecules and some common solvents was evaluated. They exhibit a very fast response time of <30s and low LOD. Moreover, the sensor array constitutes a powerful tool to discriminate between explosive taggants (3-nitrotoluene, 4-nitrotoluene and 2,3-dimethyl-2,3-dinitrobutane) and shows specific molecular recognition towards picric acid. The other sensor is based on a nanocomposite of CsPbBr3 nanocrystals (NCs) embedded in a molecularly imprinted polymer (MIP) using 3-nitrotoluene (3-NT) or nitromethane (NM) as template molecules. The straightforward and low-cost molecular imprinting process occurs inside the nanocomposite of CsPbBr3-PCL during the baking step after spin-coating. The sensing capability of the MIP sensors was evaluated and compared to that of the non-imprinted polymer (NIP) by monitoring the photoluminescence (PL) upon exposure to vapours of different explosive taggants, nitro-containing molecules and some organic solvents. The nanocomposite sensors show a fast response time to analytes below 5 s. Moreover, molecular imprinting enhances the PL response of MIP sensors and the specificity to 3-NT. An excellent selectivity towards nitro containing molecules is also exhibited, particularly when NM is used as the template molecule. In the light of the reported results, this PhD thesis proposes that these sensing platforms are potential candidates for effective explosive detection in the vapour phase

    Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots

    No full text
    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals
    corecore