248 research outputs found

    Optical Multicast Routing Under Light Splitter Constraints

    Get PDF
    During the past few years, we have observed the emergence of new applications that use multicast transmission. For a multicast routing algorithm to be applicable in optical networks, it must route data only to group members, optimize and maintain loop-free routes, and concentrate the routes on a subset of network links. For an all-optical switch to play the role of a branching router, it must be equipped with a light splitter. Light splitters are expensive equipments and therefore it will be very expensive to implement splitters on all optical switches. Optical light splitters are only implemented on some optical switches. That limited availability of light splitters raises a new problem when we want to implement multicast protocols in optical network (because usual multicast protocols make the assumption that all nodes have branching capabilities). Another issue is the knowledge of the locations of light splitters in the optical network. Nodes in the network should be able to identify the locations of light splitters scattered in the optical network so it can construct multicast trees. These problems must be resolved by implementing a multicast routing protocol that must take into consideration that not all nodes can be branching node. As a result, a new signaling process must be implemented so that light paths can be created, spanning from source to the group members

    Light-Hierarchy: The Optimal Structure for Multicast Routing in WDM Mesh Networks

    Get PDF
    Based on the false assumption that multicast incapable (MI) nodes could not be traversed twice on the same wavelength, the light-tree structure was always thought to be optimal for multicast routing in sparse splitting Wavelength Division Multiplexing (WDM) networks. In fact, for establishing a multicast session, an MI node could be crosswise visited more than once to switch a light signal towards several destinations with only one wavelength through different input and output pairs. This is called Cross Pair Switching (CPS). Thus, a new multicast routing structure light-hierarchy is proposed for all-optical multicast routing, which permits the cycles introduced by the CPS capability of MI nodes. We proved that the optimal structure for minimizing the cost of multicast routing is a set of light-hierarchies rather than the light-trees in sparse splitting WDM networks. Integer linear programming (ILP) formulations are developed to search the optimal light-hierarchies. Numerical results verified that the light-hierarchy structure could save more cost than the light-tree structure

    Avoidance of multicast incapable branching nodes for multicast routing in WDM networks

    Get PDF
    In this articlewestudy themulticast routing problem in all-opticalWDMnetworks under the spare light splitting constraint. To implement a multicast session, several light-trees may have to be used due to the limited fanouts of network nodes. Although many multicast routing algorithms have been proposed in order to reduce the total number of wavelength channels used (total cost) for a multicast session, the maximum number of wavelengths required in one fiber link (link stress) and the end-to-end delay are two parameters which are not always taken into consideration. It is known that the shortest path tree (SPT) results in the optimal end-to-end delay, but it can not be employed directly for multicast routing in sparse light splitting WDM networks. Hence, we propose a novel wavelength routing algorithm which tries to avoid the multicast incapable branching nodes (MIBs, branching nodes without splitting capability) in the shortest-path-based multicast tree to diminish the link stress. Good parts of the shortest-path-tree are retained by the algorithm to reduce the end-to-end delay. The algorithm consists of tree steps: (1) aDijkstraPro algorithmwith priority assignment and node adoption is introduced to produce a SPT with up to 38% fewer MIB nodes in the NSF topology and 46% fewerMIB nodes in the USA Longhaul topology, (2) critical articulation and deepest branch heuristics are used to process the MIB nodes, (3) a distance-based light-tree reconnection algorithm is proposed to create the multicast light-trees. Extensive simulations demonstrate the algorithm's efficiency in terms of link stress and end-to-end delay

    Tap-and-2-split switch design based on integrated optics for light-tree routing in WDM networks

    Get PDF
    This paper presents a novel cost-effective multicast-capable optical cross connect (MC-OXC) node architecture that features both tap-and-continue and tap-and-binary-split functionality. This architecture provides an interesting balance between simplicity, power efficiency and overall wavelength consumption with respect to models based on TaC (Tap and Continue) or SaD (Split-and-Delivery). The main component of this node is a novel Tap-and-2-Split Switch (Ta2S). In this paper, we propose and analyse an implementation of this switch based on integrated optics (namely, MMI taps and MZI switches), and we characterize and compare it with other alternatives implemented with the same technology. The study shows that, thanks to the presented Ta2S design, the 2-Split Tap Continue (2STC) node scales better in terms of number of components than the other alternatives. Moreover, it is more power efficient than the SaD design and requires less wavelengths than TaC thanks to the binary split capability. On the other hand, simulation results reveal that the 2-split condition does not add a significant additional wavelength consumption in usual network topologies with respect to SaD.Publicad

    Power-cost-effective node architecture for light-tree routing in WDM networks

    Get PDF
    6 pages, 10 figures.-- Contributed to: IEEE Globecom 2008 Optical Networks and Systems Symposium (GC'08 ONS), New Orleans, Louisiana, USA, Nov 30-Dec 4, 2008.We present a novel cost-effective multicast capable optical cross connect (MC-OXC) node architecture which improves efficiency of optical power by constraining splitting to only two output ports, in order to reduce power losses derived from splitting into more than two output ports. This node would manage the following actions when necessary: (a) tap and binary- splitting, which consists of tapping a small percentage of the signal power to the local node (4-8%) and an w-splitting action (n=2); and (b) tap-and-continue. We call this type of node 2-STC node (binary-split-tap-continue). We compare it with other well known state-of-art proposals and analyze its benefits in terms of number of devices and power losses. An evaluation of applicability is given, showing that the binary-split restriction shows a good trade-off between power losses, bandwidth consumption and architectural simplicity. We conclude that the 2-STC node improves power efficiency and contributes to get a good trade-off between use of resources and optical power.The work described in this paper was carried out with the support of the BONE-project ("Building the Future Optical Network in Europe"), a Network of Excellence funded by the European Commission through the 7th ICT-Framework Program. It has also been supported by the Spanish MEC grant TSI2005-07384-C03-02 and PRICIT CCG07-UC3M/TIC-3356.Publicad

    Construction of Light-trees for WDM Multicasting under Splitting Capability Constraints

    Get PDF

    Optimal multicast routing using genetic algorithm for WDM optical networks

    Get PDF
    We consider the multicast routing problem for large-scale wavelength division multiplexing (WDM) optical networks where transmission re-quests are established by point-to-multipoint connections. To realize multicast routing in WDM optical networks, some nodes need to havelight (optical) splitting capability. A node with splitting capability can forward an incoming message to more than one output link. We con-sider the problem of minimizing the number of split-capable nodes in the network for a given set of multicast requests. The maximum number of wavelengths that can be used is specified a priori. A genetic algorithm is proposed that exploits the combination of alternative shortest paths for the given multicast requests. This algorithm is examined for two realis-tic networks constructed based on the locations of major cities in Ibaraki Prefecture and those in Kanto District in Japan. Our experimental re-sults show that the proposed algorithm can reduce more than 10% of split-capable nodes compared with the case where the split-capable node placement optimization is not performed while the specified number of wavelengths is not exceeded.Includes bibliographical reference
    • 

    corecore