15 research outputs found

    Silicon Photonic Flex-LIONS for Bandwidth-Reconfigurable Optical Interconnects

    Get PDF
    This paper reports the first experimental demonstration of silicon photonic (SiPh) Flex-LIONS, a bandwidth-reconfigurable SiPh switching fabric based on wavelength routing in arrayed waveguide grating routers (AWGRs) and space switching. Compared with the state-of-the-art bandwidth-reconfigurable switching fabrics, Flex-LIONS architecture exhibits 21× less number of switching elements and 2.9× lower on-chip loss for 64 ports, which indicates significant improvements in scalability and energy efficiency. System experimental results carried out with an 8-port SiPh Flex-LIONS prototype demonstrate error-free one-to-eight multicast interconnection at 25 Gb/s and bandwidth reconfiguration from 25 Gb/s to 100 Gb/s between selected input and output ports. Besides, benchmarking simulation results show that Flex-LIONS can provide a 1.33× reduction in packet latency and >1.5× improvements in energy efficiency when replacing the core layer switches of Fat-Tree topologies with Flex-LIONS. Finally, we discuss the possibility of scaling Flex-LIONS up to N = 1024 ports (N = M × W) by arranging M^2 W-port Flex-LIONS in a Thin-CLOS architecture using W wavelengths

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed

    Optical flow switched networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 253-279).In the four decades since optical fiber was introduced as a communications medium, optical networking has revolutionized the telecommunications landscape. It has enabled the Internet as we know it today, and is central to the realization of Network-Centric Warfare in the defense world. Sustained exponential growth in communications bandwidth demand, however, is requiring that the nexus of innovation in optical networking continue, in order to ensure cost-effective communications in the future. In this thesis, we present Optical Flow Switching (OFS) as a key enabler of scalable future optical networks. The general idea behind OFS-agile, end-to-end, all-optical connections-is decades old, if not as old as the field of optical networking itself. However, owing to the absence of an application for it, OFS remained an underdeveloped idea-bereft of how it could be implemented, how well it would perform, and how much it would cost relative to other architectures. The contributions of this thesis are in providing partial answers to these three broad questions. With respect to implementation, we address the physical layer design of OFS in the metro-area and access, and develop sensible scheduling algorithms for OFS communication. Our performance study comprises a comparative capacity analysis for the wide-area, as well as an analytical approximation of the throughput-delay tradeoff offered by OFS for inter-MAN communication. Lastly, with regard to the economics of OFS, we employ an approximate capital expenditure model, which enables a throughput-cost comparison of OFS with other prominent candidate architectures. Our conclusions point to the fact that OFS offers significant advantage over other architectures in economic scalability.(cont.) In particular, for sufficiently heavy traffic, OFS handles large transactions at far lower cost than other optical network architectures. In light of the increasing importance of large transactions in both commercial and defense networks, we conclude that OFS may be crucial to the future viability of optical networking.by Guy E. Weichenberg.Ph.D

    Redes de conmutación de paquetes ópticos basadas en el intercambio de etiquetas multiplexadas por subportadora

    Full text link
    En esta tesis doctoral se presenta un sistema de conmutación de paquetes ópticos concebido como plataforma física para la siguiente generación de redes de datos denominada Internet Óptico. Las discusiones y demostraciones presentadas en esta tesis incluyen una descripción completa del diseño del nodo además de la integración de los sistemas opto-electrónicos y fotónicos que conforman un elemento viable de red, un nodo de conmutación de paquetes ópticos. En este contexto, el paradigma de la conmutación o intercambio de etiquetas ópticas permite la realización de una plataforma multi-servicio unificada que ofrece una utilización ágil y efectiva del ancho de banda disponible para el soporte de comunicaciones de voz, datos y servicios multimedia transportados en paquetes IP. En general, los nodos de conmutación de paquetes ópticos con intercambio de etiqueta que incluyen estructuras de conmutación y encaminamiento por longitud de onda además de un procesamiento en paralelo de las etiquetas permiten la conmutación de paquetes asíncronos de tamaño variable, ráfagas de paquetes y conexiones de conmutación de circuitos ópticos. Por otro lado, la explotación de los dominios de longitud de onda, tiempo y espacio permiten resolver los eventos de colisión de paquetes presentes en los nodos de la red sin recurrir a las técnicas de almacenamiento y envío presentes en los routers convencionales electrónicos, los cuales llevan asociados grandes requerimientos de capacidad de memoria. En esta tesis, además de las características mencionadas anteriormente, se han demostrado dos arquitecturas que permiten resolver las colisiones en el nodo además de un esquema de conformación de tráfico que permite regular la transmisión de los paquetes y crear clases equivalentes de tráfico con la posibilidad de incorporar prioridad a cada uno de ellos y realizar encaminamiento basado en prioridades. Junto con las demostraciones experimentales de estas características, se presentan los resultados obtPuerto Leguizamón, GA. (2008). Redes de conmutación de paquetes ópticos basadas en el intercambio de etiquetas multiplexadas por subportadora [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8305Palanci

    Evaluation of data centre networks and future directions

    Get PDF
    Traffic forecasts predict a more than threefold increase in the global datacentre workload in coming years, caused by the increasing adoption of cloud and data-intensive applications. Consequently, there has been an unprecedented need for ultra-high throughput and minimal latency. Currently deployed hierarchical architectures using electronic packet switching technologies are costly and energy-inefficient. Very high capacity switches are required to satisfy the enormous bandwidth requirements of cloud datacentres and this limits the overall network scalability. With the maturity of photonic components, turning to optical switching in data centres is a viable option to accommodate greater bandwidth and network flexibility while potentially minimising the latency, cost and power consumption. Various DCN architectures have been proposed to date and this thesis includes a comparative analysis of such electronic and optical topologies to judge their suitability based on network performance parameters and cost/energy effectiveness, while identifying the challenges faced by recent DCN infrastructures. An analytical Layer 2 switching model is introduced that can alleviate the simulation scalability problem and evaluate the performance of the underlying DCN architecture. This model is also used to judge the variation in traffic arrival/offloading at the intermediate queueing stages and the findings are used to derive closed form expressions for traffic arrival rates and delay. The results from the simulated network demonstrate the impact of buffering and versubscription and reveal the potential bottlenecks and network design tradeoffs. TCP traffic forms the bulk of current DCN workload and so the designed network is further modified to include TCP flows generated from a realistic traffic generator for assessing the impact of Layer 4 congestion control on the DCN performance with standard TCP and datacentre specific TCP protocols (DCTCP). Optical DCN architectures mostly concentrate on core-tier switching. However, substantial energy saving is possible by introducing optics in the edge tiers. Hence, a new approach to optical switching is introduced using Optical ToR switches which can offer better delay performance than commodity switches of similiar size, while having far less power dissipation. An all-optical topology has been further outlined for the efficient implementation of the optical switch meeting the future scalability demands

    Optical Technologies and Control Methods for Scalable Data Centre Networks

    Get PDF
    Attributing to the increasing adoption of cloud services, video services and associated machine learning applications, the traffic demand inside data centers is increasing exponentially, which necessitates an innovated networking infrastructure with high scalability and cost-efficiency. As a promising candidate to provide high capacity, low latency, cost-effective and scalable interconnections, optical technologies have been introduced to data center networks (DCNs) for approximately a decade. To further improve the DCN performance to meet the increasing traffic demand by using photonic technologies, two current trends are a)increasing the bandwidth density of the transmission links and b) maximizing IT and network resources utilization through disaggregated topologies and architectures. Therefore, this PhD thesis focuses on introducing and applying advanced and efficient technologies in these two fields to DCNs to improve their performance. On the one hand, at the link level, since the traditional single-mode fiber (SMF) solutions based on wavelength division multiplexing (WDM) over C+L band may fall short in satisfying the capacity, front panel density, power consumption, and cost requirements of high-performance DCNs, a space division multiplexing (SDM) based DCN using homogeneous multi-core fibers (MCFs) is proposed.With the exploited bi-directional model and proposed spectrum allocation algorithms, the proposed DCN shows great benefits over the SMF solution in terms of network capacity and spatial efficiency. In the meanwhile, it is found that the inter-core crosstalk (IC-XT) between the adjacent cores inside the MCF is dynamic rather than static, therefore, the behaviour of the IC-XT is experimentally investigated under different transmission conditions. On the other hand, an optically disaggregated DCN is developed and to ensure the performance of it, different architectures, topologies, resource routing and allocation algorithms are proposed and compared. Compared to the traditional server-based DCN, the resource utilization, scalability and the cost-efficiency are significantly improved

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version

    Digital signal processing optical receivers for the mitigation of physical layer impairments in dynamic optical networks

    Get PDF
    IT IS generally believed by the research community that the introduction of complex network functions—such as routing—in the optical domain will allow a better network utilisation, lower cost and footprint, and a more efficiency in energy usage. The new optical components and sub-systems intended for dynamic optical networking introduce new kinds of physical layer impairments in the optical signal, and it is of paramount importance to overcome this problem if dynamic optical networks should become a reality. Thus, the aim of this thesis was to first identify and characterise the physical layer impairments of dynamic optical networks, and then digital signal processing techniques were developed to mitigate them. The initial focus of this work was the design and characterisation of digital optical receivers for dynamic core optical networks. Digital receiver techniques allow for complex algorithms to be implemented in the digital domain, which usually outperform their analogue counterparts in performance and flexibility. An AC-coupled digital receiver for core networks—consisting of a standard PIN photodiode and a digitiser that takes samples at twice the Nyquist rate—was characterised in terms of both bit-error rate and packet-error rate, and it is shown that the packet-error rate can be optimised by appropriately setting the preamble length. Also, a realistic model of a digital receiver that includes the quantisation impairments was developed. Finally, the influence of the network load and the traffic sparsity on the packet-error rate performance of the receiver was investigated. Digital receiver technologies can be equally applied to optical access networks, which share many traits with dynamic core networks. A dual-rate digital receiver, capable of detecting optical packets at 10 and 1.25 Gb/s, was developed and characterised. The receiver dynamic range was extended by means of DC-coupling and non-linear signal clipping, and it is shown that the receiver performance is limited by digitiser noise for low received power and non-linear clipping for high received power

    Resilience mechanisms for carrier-grade networks

    Get PDF
    In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. These requirements are pushing network carriers for high transport capacity, energy efficiency, as well as high-availability services with low latency. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Indeed, optical transport technologies are the foundation supporting the current telecommunication network backbones, because of the high transmission bandwidth achieved in fiber optical networks. Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization, specifically with transmission rates above 100 Gbps. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). Recently, a new protection scheme referred to as Network Coding Protection (NCP) has emerged as an innovative solution to proactively enable protection in an agile and efficient manner by means of throughput improvement techniques such as Network Coding. It is an intuitive reasoning that the throughput advantages of NCP might be magnified by means of the flexible-grid provided by EONs. The goal of this thesis is three-fold. The first, is to study the advantages of NCP schemes in planning scenarios. For this purpose, this thesis focuses on the performance of NCP assuming both a fixed as well as a flexible spectrum grid. However, conversely to planning scenarios, in dynamic scenarios the accuracy of Network State Information (NSI) is crucial since inaccurate NSI might substantially affect the performance of an NCP scheme. The second contribution of this thesis is to study the performance of protection schemes in dynamic scenarios considering inaccurate NSI. For this purpose, this thesis explores prediction techniques in order to mitigate the negative effects of inaccurate NSI. On the other hand, Internet users are continuously demanding new requirements that cannot be supported by the current host-oriented communication model.This communication model is not suitable for future Internet architectures such as the so-called Internet of Things (IoT). Fortunately, there is a new trend in network research referred to as ID/Locator Split Architectures (ILSAs) which is a non-disruptive technique to mitigate the issues related to host-oriented communications. Moreover, a new routing architecture referred to as Path Computation Element (PCE) has emerged with the aim of overcoming the well-known issues of the current routing schemes. Undoubtedly, routing and protection schemes need to be enhanced to fully exploit the advantages provided by new network architectures.In light of this, the third goal of this thesis introduces a novel PCE-like architecture termed as Context-Aware PCE. In a context-aware PCE scenario, the driver of a path computation is not a host/location, as in conventional PCE architectures, rather it is an interest for a service defined within a context.En los últimos años la llegada de nuevas aplicaciones del llamado Internet del Futuro (FI) está creando requerimientos sumamente exigentes. Estos requerimientos están empujando a los proveedores de redes a incrementar sus capacidades de transporte, eficiencia energética, y sus prestaciones de servicios de alta disponibilidad con baja latencia. Es una práctica sumamente extendida para proveer servicios (FI) la adopción de un modelo multi-capa el cual consiste en el uso de tecnologías IP/MPLS así como también ópticas como por ejemplo Wavelength Division Multiplexing (WDM). De hecho, las tecnologías de transporte son el sustento del backbone de las redes de telecomunicaciones actuales debido al gran ancho de banda que proveen las redes de fibra óptica. Las redes ópticas tradicionales consisten en el uso de un espectro fijo de 50 GHz. Esto resulta en una baja utilización del espectro Óptico, específicamente con tasas de transmisiones superiores a 100 Gbps. Recientemente, las redes ópticas están experimentado cambios significativos con el propósito de proveer un espectro flexible que pueda explotar el potencial de las redes ópticas. Esto ha llevado a un nuevo paradigma denominado Redes Ópticas Elásticas (EON). Por otro lado, un nuevo esquema de protección llamado Network Coding Protection (NCP) ha emergido como una solución innovadora para habilitar de manera proactiva protección eficiente y ágil usando técnicas de mejora de throughput como es Network Coding (NC). Es un razonamiento lógico pensar que las ventajas relacionadas con throughput de NCP pueden ser magnificadas mediante el espectro flexible proveído por las redes EONs. El objetivo de esta tesis es triple. El primero es estudiar las ventajas de esquemas NCP en un escenario de planificación. Para este propósito, esta tesis se enfoca en el rendimiento de NCP asumiendo un espectro fijo y un espectro flexible. Sin embargo, contrario a escenarios de planificación, en escenarios dinámicos la precisión relacionada de la Información de Estado de Red (NSI) es crucial, ya que la imprecisión de NSI puede afectar sustancialmente el rendimiento de un esquema NCP. La segunda contribución de esta tesis es el estudio del rendimiento de esquemas de protección en escenarios dinámicos considerando NSI no precisa. Para este propósito, esta tesis explora técnicas predictivas con el propósito de mitigar los efectos negativos de NSI impreciso. Por otro lado, los usuarios de Internet están demandando continuamente nuevos requerimientos los cuales no pueden ser soportados por el modelo de comunicación orientado a hosts. Este modelo de comunicaciones no es factible para arquitecturas FI como es el Internet de las cosas (IoT). Afortunadamente, existe un nueva línea investigativa llamada ID/Locator Split Architectures (ILSAs) la cual es una técnica no disruptiva para mitigar los problemas relacionadas con el modelo de comunicación orientado a hosts. Además, un nuevo esquema de enrutamiento llamado as Path Computation Element (PCE) ha emergido con el propósito de superar los problemas bien conocidos de los esquemas de enrutamiento tradicionales. Indudablemente, los esquemas de enrutamiento y protección deben ser mejorados para que estos puedan explotar las ventajas introducidas por las nuevas arquitecturas de redes. A luz de esto, el tercer objetivo de esta tesis es introducir una nueva arquitectura PCE denominada Context-Aware PCE. En un escenario context-aware PCE, el objetivo de una acción de computación de camino no es un host o localidad, como es el caso en lo esquemas PCE tradicionales. Más bien, es un interés por un servicio definido dentro de una información de contexto
    corecore