476 research outputs found

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    High performance communication on reconfigurable clusters

    Get PDF
    High Performance Computing (HPC) has matured to where it is an essential third pillar, along with theory and experiment, in most domains of science and engineering. Communication latency is a key factor that is limiting the performance of HPC, but can be addressed by integrating communication into accelerators. This integration allows accelerators to communicate with each other without CPU interactions, and even bypassing the network stack. Field Programmable Gate Arrays (FPGAs) are the accelerators that currently best integrate communication with computation. The large number of Multi-gigabit Transceivers (MGTs) on most high-end FPGAs can provide high-bandwidth and low-latency inter-FPGA connections. Additionally, the reconfigurable FPGA fabric enables tight coupling between computation kernel and network interface. Our thesis is that an application-aware communication infrastructure for a multi-FPGA system makes substantial progress in solving the HPC communication bottleneck. This dissertation aims to provide an application-aware solution for communication infrastructure for FPGA-centric clusters. Specifically, our solution demonstrates application-awareness across multiple levels in the network stack, including low-level link protocols, router microarchitectures, routing algorithms, and applications. We start by investigating the low-level link protocol and the impact of its latency variance on performance. Our results demonstrate that, although some link jitter is always present, we can still assume near-synchronous communication on an FPGA-cluster. This provides the necessary condition for statically-scheduled routing. We then propose two novel router microarchitectures for two different kinds of workloads: a wormhole Virtual Channel (VC)-based router for workloads with dynamic communication, and a statically-scheduled Virtual Output Queueing (VOQ)-based router for workloads with static communication. For the first (VC-based) router, we propose a framework that generates application-aware router configurations. Our results show that, by adding application-awareness into router configuration, the network performance of FPGA clusters can be substantially improved. For the second (VOQ-based) router, we propose a novel offline collective routing algorithm. This shows a significant advantage over a state-of-the-art collective routing algorithm. We apply our communication infrastructure to a critical strong-scaling HPC kernel, the 3D FFT. The experimental results demonstrate that the performance of our design is faster than that on CPUs and GPUs by at least one order of magnitude (achieving strong scaling for the target applications). Surprisingly, the FPGA cluster performance is similar to that of an ASIC-cluster. We also implement the 3D FFT on another multi-FPGA platform: the Microsoft Catapult II cloud. Its performance is also comparable or superior to CPU and GPU HPC clusters. The second application we investigate is Molecular Dynamics Simulation (MD). We model MD on both FPGA clouds and clusters. We find that combining processing and general communication in the same device leads to extremely promising performance and the prospect of MD simulations well into the us/day range with a commodity cloud

    Design of a communications interface for a very high performance computer

    Get PDF
    PetaFLOPS computing power is the newest goal of Federal Government agencies, in the increasingly active supercomputer field. To obtain this performance goal by the year 2007, sophisticated parallel processing designs are required. To effectively create network interfaces/routers for interprocessor communications in such computer systems, it requires optimal hardware and software codesigns. An interface is presented for the NJIT New Millennium Computing Point Design, a system that targets 100 TeraFLOPS performance by the year 2005. The router handles store-and-forward switching and wormhole routing for the system

    Multi-node Acceleration for Large-scale GCNs

    Full text link
    Limited by the memory capacity and compute power, singe-node graph convolutional neural network (GCN) accelerators cannot complete the execution of GCNs within a reasonable amount of time, due to the explosive size of graphs nowadays. Thus, large-scale GCNs call for a multi-node acceleration system (MultiAccSys) like TPU-Pod for large-scale neural networks. In this work, we aim to scale up single-node GCN accelerators to accelerate GCNs on large-scale graphs. We first identify the communication pattern and challenges of multi-node acceleration for GCNs on large-scale graphs. We observe that (1) coarse-grained communication patterns exist in the execution of GCNs in MultiAccSys, which introduces massive amount of redundant network transmissions and off-chip memory accesses; (2) overall, the acceleration of GCNs in MultiAccSys is bandwidth-bound and latency-tolerant. Guided by these two observations, we then propose MultiGCN, the first MultiAccSys for large-scale GCNs that trades network latency for network bandwidth. Specifically, by leveraging the network latency tolerance, we first propose a topology-aware multicast mechanism with a one put per multicast message-passing model to reduce transmissions and alleviate network bandwidth requirements. Second, we introduce a scatter-based round execution mechanism which cooperates with the multicast mechanism and reduces redundant off-chip memory accesses. Compared to the baseline MultiAccSys, MultiGCN achieves 4~12x speedup using only 28%~68% energy, while reducing 32% transmissions and 73% off-chip memory accesses on average. It not only achieves 2.5~8x speedup over the state-of-the-art multi-GPU solution, but also scales to large-scale graphs as opposed to single-node GCN accelerators.Comment: To appear in T

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication
    • …
    corecore