3,666 research outputs found

    Multicast Network Coding and Field Sizes

    Full text link
    In an acyclic multicast network, it is well known that a linear network coding solution over GF(qq) exists when qq is sufficiently large. In particular, for each prime power qq no smaller than the number of receivers, a linear solution over GF(qq) can be efficiently constructed. In this work, we reveal that a linear solution over a given finite field does \emph{not} necessarily imply the existence of a linear solution over all larger finite fields. Specifically, we prove by construction that: (i) For every source dimension no smaller than 3, there is a multicast network linearly solvable over GF(7) but not over GF(8), and another multicast network linearly solvable over GF(16) but not over GF(17); (ii) There is a multicast network linearly solvable over GF(5) but not over such GF(qq) that q>5q > 5 is a Mersenne prime plus 1, which can be extremely large; (iii) A multicast network linearly solvable over GF(qm1q^{m_1}) and over GF(qm2q^{m_2}) is \emph{not} necessarily linearly solvable over GF(qm1+m2q^{m_1+m_2}); (iv) There exists a class of multicast networks with a set TT of receivers such that the minimum field size qminq_{min} for a linear solution over GF(qminq_{min}) is lower bounded by Θ(∣T∣)\Theta(\sqrt{|T|}), but not every larger field than GF(qminq_{min}) suffices to yield a linear solution. The insight brought from this work is that not only the field size, but also the order of subgroups in the multiplicative group of a finite field affects the linear solvability of a multicast network

    Evaluation of Multicasting Schemes based on Joint Multiple Description and Network Coding

    No full text
    International audienceThis paper considers a multicast scenario and compares the average reception quality obtained when combining multiple description coding (MDC) and network coding (NC). Plain (single description) network coding (NC-SDC) serves as reference. In the considered scenario, a single source is multicast to several receivers with various channel conditions. Contrary to a NC-SDC scheme, unable to recover the coded packets when not enough combinations of packets have been received, NC of MDC packets allows a more progressive quality improvement with the number of received packets, and a reduction of the effect of the quantization noise when MDC is performed via frame expansion before quantization. Considering a probability distribution for the bit transition probability during transmission to any user in the multicast group, the expected signal-to-noise ratio is evaluated. Performance comparisons are made for various error distributions, field sizes, and MDC methods (via frame expansion and correlating transform)

    Network Coding for Multi-Resolution Multicast

    Full text link
    Multi-resolution codes enable multicast at different rates to different receivers, a setup that is often desirable for graphics or video streaming. We propose a simple, distributed, two-stage message passing algorithm to generate network codes for single-source multicast of multi-resolution codes. The goal of this "pushback algorithm" is to maximize the total rate achieved by all receivers, while guaranteeing decodability of the base layer at each receiver. By conducting pushback and code generation stages, this algorithm takes advantage of inter-layer as well as intra-layer coding. Numerical simulations show that in terms of total rate achieved, the pushback algorithm outperforms routing and intra-layer coding schemes, even with codeword sizes as small as 10 bits. In addition, the performance gap widens as the number of receivers and the number of nodes in the network increases. We also observe that naiive inter-layer coding schemes may perform worse than intra-layer schemes under certain network conditions.Comment: 9 pages, 16 figures, submitted to IEEE INFOCOM 201

    On the utility of network coding in dynamic environments

    Get PDF
    Many wireless applications, such as ad-hoc networks and sensor networks, require decentralized operation in dynamically varying environments. We consider a distributed randomized network coding approach that enables efficient decentralized operation of multi-source multicast networks. We show that this approach provides substantial benefits over traditional routing methods in dynamically varying environments. We present a set of empirical trials measuring the performance of network coding versus an approximate online Steiner tree routing approach when connections vary dynamically. The results show that network coding achieves superior performance in a significant fraction of our randomly generated network examples. Such dynamic settings represent a substantially broader class of networking problems than previously recognized for which network coding shows promise of significant practical benefits compared to routing

    Network monitoring in multicast networks using network coding

    Get PDF
    In this paper we show how information contained in robust network codes can be used for passive inference of possible locations of link failures or losses in a network. For distributed randomized network coding, we bound the probability of being able to distinguish among a given set of failure events, and give some experimental results for one and two link failures in randomly generated networks. We also bound the required field size and complexity for designing a robust network code that distinguishes among a given set of failure events
    • 

    corecore