493 research outputs found

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Linear precoding for multicarrier and multicast PLC

    Get PDF
    International audienceOne of the first publications of its kind in the exciting field of multiple input multiple output (MIMO) power line communications (PLC), MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing contains contributions from experts in industry and academia, making it practical enough to provide a solid understanding of how PLC technologies work, yet scientific enough to form a base for ongoing R&D activities. This book is subdivided into five thematic parts. Part I looks at narrow- and broadband channel characterization based on measurements from around the globe. Taking into account current regulations and electromagnetic compatibility (EMC), part II describes MIMO signal processing strategies and related capacity and throughput estimates. Current narrow- and broadband PLC standards and specifications are described in the various chapters of part III. Advanced PLC processing options are treated in part IV, drawing from a wide variety of research areas such as beamforming/precoding, time reversal, multi-user processing, and relaying. Lastly, part V contains case studies and field trials, where the advanced technologies of tomorrow are put into practice today. Suitable as a reference or a handbook, MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing features self-contained chapters with extensive cross-referencing to allow for a flexible reading path

    Precoder Design for Physical Layer Multicasting

    Full text link
    This paper studies the instantaneous rate maximization and the weighted sum delay minimization problems over a K-user multicast channel, where multiple antennas are available at the transmitter as well as at all the receivers. Motivated by the degree of freedom optimality and the simplicity offered by linear precoding schemes, we consider the design of linear precoders using the aforementioned two criteria. We first consider the scenario wherein the linear precoder can be any complex-valued matrix subject to rank and power constraints. We propose cyclic alternating ascent based precoder design algorithms and establish their convergence to respective stationary points. Simulation results reveal that our proposed algorithms considerably outperform known competing solutions. We then consider a scenario in which the linear precoder can be formed by selecting and concatenating precoders from a given finite codebook of precoding matrices, subject to rank and power constraints. We show that under this scenario, the instantaneous rate maximization problem is equivalent to a robust submodular maximization problem which is strongly NP hard. We propose a deterministic approximation algorithm and show that it yields a bicriteria approximation. For the weighted sum delay minimization problem we propose a simple deterministic greedy algorithm, which at each step entails approximately maximizing a submodular set function subject to multiple knapsack constraints, and establish its performance guarantee.Comment: 37 pages, 8 figures, submitted to IEEE Trans. Signal Pro

    Power Allocation in Multiuser Parallel Gaussian Broadcast Channels With Common and Confidential Messages

    Get PDF
    We consider a broadcast communication over parallel channels, where the transmitter sends K+1 messages: one common message to all users, and K confidential messages to each user, which need to be kept secret from all unintended users. We assume partial channel state information at the transmitter, stemming from noisy channel estimation. Our main goal is to design a power allocation algorithm in order to maximize the weighted sum rate of common and confidential messages under a total power constraint. The resulting problem for joint encoding across channels is formulated as the cascade of two problems, the inner min problem being discrete, and the outer max problem being convex. Thereby, efficient algorithms for this kind of optimization program can be used as solutions to our power allocation problem. For the special case K=2 , we provide an almost closed-form solution, where only two single variables must be optimized, e.g., through dichotomic searches. To reduce computational complexity, we propose three new algorithms, maximizing the weighted sum rate achievable by two suboptimal schemes that perform per-user and per-channel encoding. By numerical results, we assess the performance of all proposed algorithms as a function of different system parameters

    Performance Evaluation of Hybrid Precoder Design for Multi-User Massive MIMO Systems with Low-Resolution ADCs/DACs

    Get PDF
    This paper presents a comprehensive analysis and design of a hybrid precoding system tailored for mmWave multi-user massive MIMO systems in both downlink and uplink scenarios. The proposed system employs a two-stage precoding approach, incorporating UQ and NUQ techniques, along with low-resolution DACs in downlink and ADCs in uplink to address hardware limitations. The system considers Zero Forcing and Minimum Mean Square Error algorithms as digital precoding methods for the uplink scenario, while exploring the impact of different DAC resolutions on system performance. Extensive simulations reveal that the proposed system surpasses conventional analog beamforming methods, particularly in multi-user scenarios involving inter-user interference. In downlink, the system demonstrates a trade-off between SE and EE, achieving higher Energy Efficiency with NUQ. In uplink, NUQ and UQ converters exhibit similar performance trends regardless of the chosen combiner algorithm. The proposed system attains enhanced Spectral and Energy Efficiency while maintaining reduced complexity and overhead. The study significantly contributes to the advancement of efficient and effective mmWave multi-user massive MIMO systems by providing a thorough analysis of various quantization schemes and precoding techniques. The findings of this research are expected to aid in the optimization of 5G and beyond technologies, particularly in high-density deployment scenarios
    corecore