37 research outputs found

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande

    PAM Performance Analysis in Multicast-Enabled Wavelength-Routing Data Centers

    Get PDF
    Multilevel pulse amplitude modulation (M-PAM) is gaining momentum for high-capacity and power-efficient cloud computing. Compared to the classic on-off keying (OOK) modulation, high-order PAM yields better spectral efficiency but is also more susceptible to physical layer degradation effects. We develop a cross-layer analysis framework to examine the PAM transmission performance in data center network environments supporting both optical multicasting and wavelength routing. Our analysis is conducted on a switch architecture based on an arrayed-waveguide grating (AWG) core and distributed broadcast domains, exhibiting different physical paths, and random, uncontrolled crosstalk noise. Reed-Solomon coding with rate adaptation is incorporated into PAM transceivers to compensate for impairments. Our Monte Carlo simulations point to the significant impact of AWG crosstalk on higher order PAM in wavelength-reuse architectures and the importance of code rate adaptation for signals traversing multiple routing stages. According to our study, 8-PAM offers the highest effective bit rates for signals terminating in one broadcast domain and performs poorly when considering interdomain connectivity. On the other hand, the impairment-induced degradation of interdomain capacity for 4-PAM can be limited to 20.7%, making it better suited for connections spanning two broadcast domains and a crosstalk-rich stage. Our results call for software-defined PAM transceiver designs in support of both modulation order and code rate adaptation

    IP multicast over WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Upper Bound Analysis and Routing in Optical Benes Networks

    Get PDF
    Multistage Interconnection Networks (MIN) are popular in switching and communication applications. It has been used in telecommunication and parallel computing systems for many years. The new challenge facing optical MIN is crosstalk, which is caused by coupling two signals within a switching element. Crosstalk is not too big an issue in the Electrical Domain, but due to the stringent Bit Error Rate (BER) constraint, it is a big major concern in the Optical Domain. In this research dissertation, we will study the blocking probability in the optical network and we will study the deterministic conditions for strictly non-blocking Vertical Stacked Optical Benes Networks (VSOBN) with and without worst-case scenarios. We will establish the upper bound on blocking probability of Vertical Stacked Optical Benes Networks with respect to the number of planes used when the non-blocking requirement is not met. We will then study routing in WDM Benes networks and propose a new routing algorithm so that the number of wavelengths can be reduced. Since routing in WDM optical network is an NP-hard problem, many heuristic algorithms are designed by many researchers to perform this routing. We will also develop a genetic algorithm, simulated annealing algorithm and ant colony technique and apply these AI algorithms to route the connections in WDM Benes network

    Modeling all-optical space/time switching fabrics with frame integrity

    Get PDF
    All-optical networks have attracted significant attention because they promise to provide significant advantages in throughput, bandwidth, scalability, reliability, security, and energy efficiency. These six features appealed to optical transport-network operators in the past and, currently, to cloud-computing and data-center providers. But, the absence of optical processors and optical Random Access Memory (RAM) has forced the optical network designers to use optical-to-electrical conversion on the input side of every node so the node can process packet headers and store data during the switching operation. And, at every nodeā€™s output side, all data must be converted from its electronic form back to the optical domain before being transmitted over fiber to the next node. This practice reduces all six of those advantages the network would have if it were all-optical. So, to achieve a network that is all-optical end-to-end, many all-optical switching fabrics have been proposed. Many of these proposed switching fabrics lack a control algorithm to operate them. Two control algorithms are proposed in this dissertation for two previously-proposed switching fabrics. The first control algorithm operates a timeslot interchanger and the second operates a space/time switching fabric - where both these photonic systems are characterized by active Feed-Forward Fiber Delay Line (FF-FDL) and the frame-integrity constraint. In each case, the proposed algorithm provides non-blocking control of its corresponding switching fabric. In addition, this dissertation derives the output signal power from each switching fabric in terms of crosstalk and insertion loss

    Blocking behaviors of crosstalk-free optical Banyan networks on vertical stacking

    Get PDF
    Banyan networks are attractive for constructing directional coupler (DC)-based optical switching networks for their small depth and self-routing capability. Crosstalk between optical signals passing through the same DC is an intrinsic drawback in DC-based optical networks. Vertical stacking of multiple copies of an optical banyan network is a novel scheme for building nonblocking (crosstalk-free) optical switching networks. The resulting network, namely vertically stacked optical banyan (VSOB) network, preserves all the properties of the banyan network, but increases the hardware cost significantly. Though much work has been done for determining the minimum number of stacked copies (planes) required for a nonblocking VSOB network, little is known on analyzing the blocking probabilities of VSOB networks that do not meet the nonblocking condition (i.e., with fewer stacked copies than required by the nonblocking condition). In this paper, we analyze the blocking probabilities of VSOB networks and develop their upper and lower bounds with respect to the number of planes in the networks. These bounds depict accurately the overall blocking behaviors of VSOB networks and agree with the conditions of strictly nonblocking and rearrangeably nonblocking VSOB networks respectively. Extensive simulation on a network simulator with both random routing and packing strategy has shown that the blocking probabilities of both strategies fall nicely within our bounds, and the blocking probability of packing strategy actually matches the lower bound. The proposed bounds are significant because they reveal the inherent relationships between blocking probability and network hardware cost in terms of the number of planes, and provide network developers a quantitative guidance to trade blocking probability for hardware cost. In particular, our bounds provide network designers an effective tool to estimate the minimum and maximum blocking probabilities of VSOB networks in which different routing strategies may be applied. An interesting conclusion drawn from our work that has practical applications is that the hardware cost of a VSOB network can be reduced dramatically if a predictable and almost negligible nonzero blocking probability is allowed.Xiaohong Jiang; Hong Shen; Khandker, Md.M.-ur-R.; Horiguchi, S

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. Speciļ¬cally, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both

    Optical flow switched networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 253-279).In the four decades since optical fiber was introduced as a communications medium, optical networking has revolutionized the telecommunications landscape. It has enabled the Internet as we know it today, and is central to the realization of Network-Centric Warfare in the defense world. Sustained exponential growth in communications bandwidth demand, however, is requiring that the nexus of innovation in optical networking continue, in order to ensure cost-effective communications in the future. In this thesis, we present Optical Flow Switching (OFS) as a key enabler of scalable future optical networks. The general idea behind OFS-agile, end-to-end, all-optical connections-is decades old, if not as old as the field of optical networking itself. However, owing to the absence of an application for it, OFS remained an underdeveloped idea-bereft of how it could be implemented, how well it would perform, and how much it would cost relative to other architectures. The contributions of this thesis are in providing partial answers to these three broad questions. With respect to implementation, we address the physical layer design of OFS in the metro-area and access, and develop sensible scheduling algorithms for OFS communication. Our performance study comprises a comparative capacity analysis for the wide-area, as well as an analytical approximation of the throughput-delay tradeoff offered by OFS for inter-MAN communication. Lastly, with regard to the economics of OFS, we employ an approximate capital expenditure model, which enables a throughput-cost comparison of OFS with other prominent candidate architectures. Our conclusions point to the fact that OFS offers significant advantage over other architectures in economic scalability.(cont.) In particular, for sufficiently heavy traffic, OFS handles large transactions at far lower cost than other optical network architectures. In light of the increasing importance of large transactions in both commercial and defense networks, we conclude that OFS may be crucial to the future viability of optical networking.by Guy E. Weichenberg.Ph.D

    Optical routing in packet switched networks

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2001Includes bibliographical references (leaves: 72-75)Text in English; Abstract: Turkish and Englishx, 75 leavesEver-increasing demand for high capacities brought by Internet usage forces designing faster transport networks for carrying information packets. In the last ten years much attention has been focused on transporting packets directly over the optical transport networks. Researches in this area range from simple electronic and optical switching/routing methods to hybrid and more complicated all-optical packet switching systems. However, major bottleneck in all these methods is designing fast, reliable and inexpensive optical routing/switching devices.In this thesis, a method for optical routing usmg fiber Bragg gratings is proposed. In this method, electronic interface is used only for routing information (routing table) update cycle while packet header extraction and switching is done in optical domain. Routing is performed optically by controlling the refractive index change in fiber gratings. Four bits of header (label) information is used for routing packets to three different output routes. The network is simulated and its performance is evaluated by special software of Virtual Photonics
    corecore