7 research outputs found

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    D13.3 Overall assessment of selected techniques on energy- and bandwidth-efficient communications

    Get PDF
    Deliverable D13.3 del projecte europeu NEWCOM#The report presents the outcome of the Joint Research Activities (JRA) of WP1.3 in the last year of the Newcom# project. The activities focus on the investigation of bandwidth and energy efficient techniques for current and emerging wireless systems. The JRAs are categorized in three Tasks: (i) the first deals with techniques for power efficiency and minimization at the transceiver and network level; (ii) the second deals with the handling of interference by appropriate low interference transmission techniques; (iii) the third is concentrated on Radio Resource Management (RRM) and Interference Management (IM) in selected scenarios, including HetNets and multi-tier networks.Peer ReviewedPostprint (published version

    PAPR Reduction Solutions for 5G and Beyond

    Get PDF
    The latest fifth generation (5G) wireless technology provides improved communication quality compared to earlier generations. The 5G New Radio (NR), specified by the 3rd Generation Partnership Project (3GPP), addresses the modern requirements of the wireless networks and targets improved communication quality in terms of for example peak data rates, latency and reliability. On the other hand, there are still various crucial issues that impact the implementation and energy-efficiency of 5G NR networks and their different deployments. The power-efficiency of transmitter power amplifiers (PAs) is one of these issues. The PA is an important unit of a communication system, which is responsible from amplifying the transmit signal towards the antenna. Reaching high PA power-efficiency is known to be difficult when the transmit waveform has a high peak-to-average power ratio (PAPR). The cyclic prefix (CP)-orthogonal frequencydivision multiplexing (OFDM) that is the main physical-layer waveform of 5G NR, suffers from such high PAPR challenge. There are generally many PAPR reduction methods proposed in the literature, however, many of these have either very notable computational complexity or impose substantial inband distortion. Moreover, 5G NR has new features that require redesigning the PAPR reduction methods. In line with these, the first contribution of this thesis is the novel frequencyselective PAPR reduction concept, where clipping noise is shaped in a frequencyselective manner over the active passband. This concept is in line with the 5G NR, where aggressive frequency-domain multiplexing is considered as an important feature. Utilizing the frequency-selective PAPR reduction enables the realization of the heterogeneous resource utilization within one passband. The second contribution of this thesis is the frequency-selective single-numerology (SN) and mixed-numerology (MN) PAPR reduction methods. The 5G NR targets utilizing different physical resource blocks (PRBs) and bandwidth parts (BWPs) within one passband flexibly. Yet, existing PAPR reduction methods do not exploit these features. Based on this, novel algorithms utilizing PRB and BWP level control of clipping noise are designed to meet error vector magnitude (EVM) limits of the modulations while reducing the PAPR. TheMNallocation has one critical challenge as inter numerology interference (INI) emerges after aggregation of subband signals. Proposed MN PAPR reduction algorithm overcomes this issue by cancelling INI within the PAPR reduction loop, which has not been considered earlier. The third contribution of this thesis is the proposal of two novel non-iterative PAPR reduction methods. First method utilizes the fast-convolution filteredOFDM (FC-F-OFDM) that has excellent spectral containment, and combines it with clipping. Moreover, clipping noise is also allocated to guard bands by filter passband extension (FPE) and clipping noise in out-of-band (OOB) regions is essentially filtered through FC filtering. The second method is the guard-tone reservation (GTR) which is applied to discrete Fourier transform-spread-OFDM (DFT-s-OFDM). Uniquely, GTR estimates the time domain peaks in data symbol domain before inverse fast Fourier transform (IFFT), and uses guard band tones for PAPR reduction. The fourth contribution of the thesis is the design of two novel machine learning (ML) algorithms that improve the drawbacks of frequency-selective PAPRreduction. The first ML algorithm, PAPRer, models the nonlinear relation between the PAPR target and the realized PAPR value. Then, it auto-tunes the optimal PAPR target and this way minimizes the realized PAPR. The second ML algorithm, one-shot clipping-and-filtering (OSCF), solves the complexity problem of iterative clipping and filtering (ICF)-like methods by generating proper approximated clipping noise signal after running only one iteration, leading to very efficient PAPR reduction. Finally, an over-arching contribution of this thesis is the experimental validation of the performance benefits of the proposed methods by considering realistic 5GNR uplink (UL) and downlink (DL) testbeds that include realistic PAs and associated hardware. It is very important to confirm the practical benefits of the proposed methods and, this is realized with the conducted experimental work

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Timing and Frequency Synchronization and Channel Estimation in OFDM-based Systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) due to its appealing features, such as robustness against frequency selective fading and simple channel equalization, is adopted in communications systems such as WLAN, WiMAX and DVB. However, OFDM systems are sensitive to synchronization errors caused by timing and frequency offsets. Besides, the OFDM receiver has to perform channel estimation for coherent detection. The goal of this thesis is to investigate new methods for timing and frequency synchronization and channel estimation in OFDM-based systems. First, we investigate new methods for preamble-aided coarse timing estimation in OFDM systems. Two novel timing metrics using high order statistics-based correlation and differential normalization functions are proposed. The performance of the new timing metrics is evaluated using different criteria including class-separability, robustness to the carrier frequency offset, and computational complexity. It is shown that the new timing metrics can considerably increase the class-separability due to their more distinct values at correct and wrong timing instants, and thus give a significantly better detection performance than the existing timing metrics do. Furthermore, a new method for coarse estimation of the start of the frame is proposed, which remarkably reduces the probability of inter-symbol interference (ISI). The improved performances of the new schemes in multipath fading channels are shown by the probabilities of false alarm, missed-detection and ISI obtained through computer simulations. Second, a novel pilot-aided algorithm is proposed for the detection of integer frequency offset (IFO) in OFDM systems. By transforming the IFO into two new integer parameters, the proposed method can largely reduce the number of trial values for the true IFO. The two new integer parameters are detected using two different pilot sequences, a periodic pilot sequence and an aperiodic pilot sequence. It is shown that the new scheme can significantly reduce the computational complexity while achieving almost the same performance as the previous methods do. Third, we propose a method for joint timing and frequency synchronization and channel estimation for OFDM systems that operate in doubly selective channels. Basis expansion modeling (BEM) that captures the time variations of the channel is used to reduce the number of unknown channel parameters. The BEM coefficients along with the timing and frequency offsets are estimated by using a maximum likelihood (ML) approach. An efficient algorithm is then proposed for reducing the computational complexity of the joint estimation. The complexity of the new method is assessed in terms of the number of multiplications. The mean square estimation error of the proposed method is evaluated in comparison with previous methods, indicating a remarkable performance improvement by the new method. Fourth, we present a new scheme for joint estimation of CFO and doubly selective channel in orthogonal frequency division multiplexing systems. In the proposed preamble-aided method, the time-varying channel is represented using BEM. CFO and BEM coefficients are estimated using the principles of particle and Kalman filtering. The performance of the new method in multipath time-varying channels is investigated in comparison with previous schemes. The simulation results indicate a remarkable performance improvement in terms of the mean square errors of CFO and channel estimates. Fifth, a novel algorithm is proposed for timing and frequency synchronization and channel estimation in the uplink of orthogonal frequency division multiple access (OFDMA) systems by considering high-mobility situations and the generalized subcarrier assignment. By using BEM to represent a doubly selective channel, a maximum likelihood (ML) approach is proposed to jointly estimate the timing and frequency offsets of different users as well as the BEM coefficients of the time-varying channels. A space-alternating generalized expectation-maximization algorithm is then employed to transform the maximization problem for all users into several simpler maximization problems for each user. The computational complexity of the new timing and frequency offset estimator is analyzed and its performance in comparison with that of existing methods using the mean square error is evaluated . Finally, two novel approaches for joint CFO and doubly selective channel estimation in the uplink of multiple-input multiple-output orthogonal frequency division multiple access (MIMO-OFDMA) systems are presented. Considering high-mobility situations, where channels change within an OFDMA symbol interval, and the time varying nature of CFOs, BEM is employed to represent the time variations of the channel. Two new approaches are then proposed based on Schmidt Kalman filtering (SKF). The first approach utilizes Schmidt extended Kalman filtering for each user to estimate the CFO and BEM coefficients. The second approach uses Gaussian particle filter along with SKF to estimate the CFO and BEM coefficients of each user. The Bayesian Cramer Rao bound is derived, and performance of the new schemes are evaluated using mean square error. It is demonstrated that the new schemes can significantly improve the mean square error performance in comparison with that of the existing methods

    Spread-spectrum techniques for environmentally-friendly underwater acoustic communications

    Get PDF
    PhD ThesisAnthropogenic underwater noise has been shown to have a negative impact on marine life. Acoustic data transmissions have also been shown to cause behavioural responses in marine mammals. A promising approach to address these issues is through reducing the power of acoustic data transmissions. Firstly, limiting the maximum acoustic transmit power to a safe limit that causes no injury, and secondly, reducing the radius of the discomfort zone whilst maximising the receivable range. The discomfort zone is dependent on the signal design as well as the signal power. To achieve these aims requires a signal and receiver design capable of synchronisation and data reception at low-received-SNR, down to around −15 dB, with Doppler effects. These requirements lead to very high-ratio spread-spectrum signaling with efficient modulation to maximise data rate, which necessitates effective Doppler correction in the receiver structure. This thesis examines the state-of-the-art in this area and investigates the design, development and implementation of a suitable signal and receiver structure, with experimental validation in a variety of real-world channels. Data signals are designed around m-ary orthogonal signaling based on bandlimited carrierless PN sequences to create an M-ary Orthogonal Code Keying (M-OCK) modulation scheme. Synchronisation signal structures combining the energy of multiple unique PN symbols are shown to outperform single PN sequences of the same bandwidth and duration in channels with low SNR and significant Doppler effects. Signals and receiver structures are shown to be capable of reliable communications with band of 8 kHz to 16 kHz and transmit power limited to less than 170.8 dB re 1 μPa @ 1m, or 1W of acoustic power, over ranges of 10 km in sea trials, with low-received-SNR below −10 dB, at data rates of up to 140.69 bit/s. Channel recordings with AWGN demonstrated limits of signal and receiver performance of BER 10−3 at −14 dB for 35.63 bit/s, and −8.5 dB for 106.92 bit/s. Piloted study of multipath exploitation showed this performance could be improved to −10.5 dB for 106.92 bit/s by combining the energy of two arrival paths. Doppler compensation techniques are explored with experimental validation showing synchronisation and data demodulation at velocities over ranges of ±2.7m/s. Non-binary low density parity check (LDPC) error correction coding with M-OCK signals is investigated showing improved performance over Reed-Solomon (RS) coding of equivalent code rate in simulations and experiments in real underwater channels. The receiver structures are implemented on an Android mobile device with experiments showing live real-time synchronisation and data demodulation of signals transmitted through an underwater channel.UK Engineering and Physical Sciences Research Council (EPSRC): PhD Doctoral Training Account (DTA)

    Interference mitigation and interference avoidance for cellular OFDMA-TDD networks

    Get PDF
    In recent years, cellular systems based on orthogonal frequency division multiple access – time division duplex (OFDMA-TDD) have gained considerable popularity. Two of the major reasons for this are, on the one hand, that OFDMA enables the receiver to effectively cope with multipath propagation while keeping the complexity low. On the other hand, TDD offers efficient support for cell-specific uplink (UL)/downlink (DL) asymmetry demands by allowing each cell to independently set its UL/DL switching point (SP). However, cell-independent SP gives rise to crossed slots. In particular, crossed slots arise when neighbouring cells use the same slot in opposing link directions, resulting in base station (BS)-to-BS interference and mobile station (MS)-to-MS interference. BS-to-BS interference, in particular, can be quite detrimental due to the exposed location of BSs, which leads to high probability of line-of-sight (LOS) conditions. The aim of this thesis is to address the BS-to-BS interference problem in OFDMA-TDDcellular networks. A simulation-based approach is used to demonstrate the severity of BS-to-BS interference and a signal-to-interference-plus-noise ratio (SINR) equation for OFDMA is formulated to aid system performance analysis. The detrimental effects of crossed slot interference in OFDMA-TDD cellular networks are highlighted by comparing methods specifically targeting the crossed slots interference problem. In particular, the interference avoidance method fixed slot allocation (FSA) is compared against state of the art interference mitigation approaches, viz: random time slot opposing (RTSO) and zone division (ZD). The comparison is done based on Monte Carlo simulations and the main comparison metric is spectral efficiency calculated using the SINR equation formulated in this thesis. The simulation results demonstrate that when LOS conditions among BSs are present, both RTSO and ZD perform worse than FSA for all considered performance metrics. It is concluded from the results that current interference mitigation techniques do not offer an effective solution to the BS-to-BS interference problem. Hence, new interference avoidance methods, which unlike FSA, do not sacrifice the advantages of TDD are open research issues addressed in this thesis. The major contribution of this thesis is a novel cooperative resource balancing technique that offers a solution to the crossed slot problem. The novel concept, termed asymmetry balancing, is targeted towards next-generation cellular systems, envisaged to have ad hoc and multi-hop capabilities. Asymmetry balancing completely avoids crossed slots by keeping the TDD SPs synchronised among BSs. At the same time, the advantages of TDD are retained, which is enabled by introducing cooperation among the entities in the network. If a cell faces resource shortage in one link direction, while having free resources in the opposite link direction, the free resources can be used to support the overloaded link direction. In particular, traffic can be offloaded to near-by mobile stations at neighbouring cells that have available resources. To model the gains attained with asymmetry balancing, a mathematical framework is developed which is verified by Monte Carlo simulations. In addition, asymmetry balancing is compared against both ZD and FSA based on simulations and the results demonstrate the superior performance of asymmetry balancing. It can be concluded that the novel interference avoidance approach is a very promising candidate t
    corecore