851 research outputs found

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    EXIT-charts-aided hybrid multiuser detector for multicarrier interleave-division multiple access

    Get PDF
    A generically applicable hybrid multiuser detector (MUD) concept is proposed by appropriately activating different MUDs in consecutive turbo iterations based on the mutual information (MI) gain. It is demonstrated that the proposed hybrid MUD is capable of approaching the optimal Bayesian MUD's performance despite its reduced complexity, which is at a modestly increased complexity in comparison with that of the suboptimum soft interference cancellation (SoIC) MU

    Development of a dc-ac power conditioner for wind generator by using neural network

    Get PDF
    This project present of development single phase DC-AC converter for wind generator application. The mathematical model of the wind generator and Artificial Neural Network control for DC-AC converter is derived. The controller is designed to stabilize the output voltage of DC-AC converter. To verify the effectiveness of the proposal controller, both simulation and experimental are developed. The simulation and experimental result show that the amplitude of output voltage of the DC-AC converter can be controlled

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Design of Multi-Layer Protocol Architecture using Hybrid Optimal Link State Routing (HOLSR) Protocol for CR Networks

    Get PDF
    There is a lack of spectrum due to the rising demand for sensing device communication and the inefficient use of the existing available spectrum. Through opportunistic access to licenced bands, which does not obstruct the primary sensory users (PU), it is feasible to enhance the inefficient use of the current sensor device frequency spectrum. Cognitive settings are a demanding environment in which to carry out tasks like sensor network routing and spectrum access since it is difficult to access channels due to the presence of PUs. The basic goal of the routing problem in sensor networks is to establish and maintain wireless sensor multihop paths between cognitive sensor nodes. The frequency to be used as well as the number of hops at each sensor node along the path must be determined for this assignment. In order to improve performance while using less energy, scientists suggested a unique adaptive cross-layer optimisation subcarrier distribution technique with the HOLSR protocol for wireless sensor nodes. Throughput and energy consumption parameters are used to analyse the sensor network architecture protocol that has been developed. The energy usage of the sensor nodes in the network has increased by 50%. The performance of the proposed HOLSR algorithm is assessed using the simulation results, and the results are contrasted with those of a conventional multicarrier (MC) system in terms of bit error rate and throughput
    • 

    corecore