29 research outputs found

    Multicamera Action Recognition with Canonical Correlation Analysis and Discriminative Sequence Classification

    Get PDF
    Proceedings of: 4th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2011, La Palma, Canary Islands, Spain, May 30 - June 3, 2011.This paper presents a feature fusion approach to the recognition of human actions from multiple cameras that avoids the computation of the 3D visual hull. Action descriptors are extracted for each one of the camera views available and projected into a common subspace that maximizes the correlation between each one of the components of the projections. That common subspace is learned using Probabilistic Canonical Correlation Analysis. The action classification is made in that subspace using a discriminative classifier. Results of the proposed method are shown for the classification of the IXMAS dataset.Publicad

    Action recognition in visual sensor networks: a data fusion perspective

    Get PDF
    Visual Sensor Networks have emerged as a new technology to bring computer vision algorithms to the real world. However, they impose restrictions in the computational resources and bandwidth available to solve target problems. This thesis is concerned with the definition of new efficient algorithms to perform Human Action Recognition with Visual Sensor Networks. Human Action Recognition systems apply sequence modelling methods to integrate the temporal sensor measurements available. Among sequence modelling methods, the Hidden Conditional Random Field has shown a great performance in sequence classification tasks, outperforming many other methods. However, a parameter estimation procedure has not been proposed with feature and model selection properties. This thesis fills this lack proposing a new objective function to optimize during training. The L2 regularizer employed in the standard objective function is replaced by an overlapping group-L1 regularizer that produces feature and model selection effects in the optima. A gradient-based search strategy is proposed to find the optimal parameters of the objective function. Experimental evidence shows that Hidden Conditional Random Fields with their parameters estimated employing the proposed method have a higher predictive accuracy than those estimated with the standard method, with an smaller inference cost. This thesis also deals with the problem of human action recognition from multiple cameras, with the focus on reducing the amount of network bandwidth required. A multiple view dimensionality reduction framework is developed to obtain similar low dimensional representation for the motion descriptors extracted from multiple cameras. An alternative is proposed predicting the action class locally at each camera with the motion descriptors extracted from each view and integrating the different action decisions to make a global decision on the action performed. The reported experiments show that the proposed framework has a predictive performance similar to 3D state of the art methods, but with a lower computational complexity and lower bandwidth requirements. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Las Redes de Sensores Visuales son una nueva tecnología que permite el despliegue de algoritmos de visión por computador en el mundo real. Sin embargo, estas imponen restricciones en los recursos de computo y de ancho de banda disponibles para la resolución del problema en cuestión. Esta tesis tiene por objeto la definición de nuevos algoritmos con los que realizar reconocimiento de actividades humanas en redes de sensores visuales, teniendo en cuenta las restricciones planteadas. Los sistemas de reconocimiento de acciones aplican métodos de modelado de secuencias para la integración de las medidas temporales proporcionadas por los sensores. Entre los modelos para el modelado de secuencias, el Hidden Conditional Random Field a mostrado un gran rendimiento en la clasificación de secuencias, superando a otros métodos existentes. Sin embargo, no se ha definido un procedimiento para la integración de sus parámetros que incluya selección de atributos y selección de modelo. Esta tesis tiene por objeto cubrir esta carencia proponiendo una nueva función objetivo para optimizar durante la estimación de los parámetros obtimos. El regularizador L2 empleado en la función objetivo estandar se va a remplazar for un regularizador grupo-L1 solapado que va a producir los efectos de selección de modelo y atributos deseados en el óptimo. Se va a proponer una estrategia de búsqueda con la que obtener el valor óptimo de estos parámetros. Los experimentos realizados muestran que los modelos estimados utilizando la función objetivo prouesta tienen un mayor poder de predicción, reduciendo al mismo tiempo el coste computacional de la inferencia. Esta tesis también trata el problema del reconocimiento de acciones humanas emepleando multiples cámaras, centrándonos en reducir la cantidad de ancho de banda requerido par el proceso. Para ello se propone un nueva estructura en la que definir algoritmos de reducción de dimensionalidad para datos definidos en multiples vistas. Mediante su aplicación se obtienen representaciones de baja dimensionalidad similares para los descriptores de movimiento calculados en cada una de las cámaras.También se propone un método alternativo basado en la predicción de la acción realizada con los descriptores obtenidos en cada una de las cámaras, para luego combinar las diferentes predicciones en una global. La experimentación realizada muestra que estos métodos tienen una eficacia similar a la alcanzada por los métodos existentes basados en reconstrucción 3D, pero con una menor complejidad computacional y un menor uso de la red

    A Data Fusion Perspective on Human Motion Analysis Including Multiple Camera Applications

    Get PDF
    Proceedings of: 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, (IWINAC 2013). Mallorca, Spain, June 10-14.Human motion analysis methods have received increasing attention during the last two decades. In parallel, data fusion technologies have emerged as a powerful tool for the estimation of properties of objects in the real world. This papers presents a view of human motion analysis from the viewpoint of data fusion. JDL process model and Dasarathy's input-output hierarchy are employed to categorize the works in the area. A survey of the literature in human motion analysis from multiple cameras is included. Future research directions in the area are identified after this review.Publicad

    Fisher Motion Descriptor for Multiview Gait Recognition

    Get PDF
    The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to de ne custom spatial con gurations of the descriptors around the target person, obtaining a rich representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [1]) extracted on the di erent spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [2]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on `CASIA' dataset [3] (parts B and C), `TUM GAID' dataset [4], `CMU MoBo' dataset [5] and the recent `AVA Multiview Gait' dataset [6]. The results show that this new approach achieves state-of-the-art results in the problem of gait recognition, allowing to recognize walking people from diverse viewpoints on single and multiple camera setups, wearing di erent clothes, carrying bags, walking at diverse speeds and not limited to straight walking paths

    A vision-based system for intelligent monitoring: human behaviour analysis and privacy by context

    Get PDF
    Due to progress and demographic change, society is facing a crucial challenge related to increased life expectancy and a higher number of people in situations of dependency. As a consequence, there exists a significant demand for support systems for personal autonomy. This article outlines the vision@home project, whose goal is to extend independent living at home for elderly and impaired people, providing care and safety services by means of vision-based monitoring. Different kinds of ambient-assisted living services are supported, from the detection of home accidents, to telecare services. In this contribution, the specification of the system is presented, and novel contributions are made regarding human behaviour analysis and privacy protection. By means of a multi-view setup of cameras, people's behaviour is recognised based on human action recognition. For this purpose, a weighted feature fusion scheme is proposed to learn from multiple views. In order to protect the right to privacy of the inhabitants when a remote connection occurs, a privacy-by-context method is proposed. The experimental results of the behaviour recognition method show an outstanding performance, as well as support for multi-view scenarios and real-time execution, which are required in order to provide the proposed services

    Human Motion Analysis for Efficient Action Recognition

    Get PDF
    Automatic understanding of human actions is at the core of several application domains, such as content-based indexing, human-computer interaction, surveillance, and sports video analysis. The recent advances in digital platforms and the exponential growth of video and image data have brought an urgent quest for intelligent frameworks to automatically analyze human motion and predict their corresponding action based on visual data and sensor signals. This thesis presents a collection of methods that targets human action recognition using different action modalities. The first method uses the appearance modality and classifies human actions based on heterogeneous global- and local-based features of scene and humanbody appearances. The second method harnesses 2D and 3D articulated human poses and analyizes the body motion using a discriminative combination of the parts’ velocities, locations, and correlations histograms for action recognition. The third method presents an optimal scheme for combining the probabilistic predictions from different action modalities by solving a constrained quadratic optimization problem. In addition to the action classification task, we present a study that compares the utility of different pose variants in motion analysis for human action recognition. In particular, we compare the recognition performance when 2D and 3D poses are used. Finally, we demonstrate the efficiency of our pose-based method for action recognition in spotting and segmenting motion gestures in real time from a continuous stream of an input video for the recognition of the Italian sign gesture language

    A Methodology for Extracting Human Bodies from Still Images

    Get PDF
    Monitoring and surveillance of humans is one of the most prominent applications of today and it is expected to be part of many future aspects of our life, for safety reasons, assisted living and many others. Many efforts have been made towards automatic and robust solutions, but the general problem is very challenging and remains still open. In this PhD dissertation we examine the problem from many perspectives. First, we study the performance of a hardware architecture designed for large-scale surveillance systems. Then, we focus on the general problem of human activity recognition, present an extensive survey of methodologies that deal with this subject and propose a maturity metric to evaluate them. One of the numerous and most popular algorithms for image processing found in the field is image segmentation and we propose a blind metric to evaluate their results regarding the activity at local regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies from challenging single images, which is the main contribution of the dissertation. Our methodology is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by our research in the fields of face, skin and hands detection. Experimental results and comparison with state-of-the-art methodologies demonstrate the success of our approach

    Unsupervised and Semi-supervised Methods for Human Action Analysis

    Get PDF
    corecore