75 research outputs found

    Electro‐Thermal Subsurface Gas Generation and Transport: Model Validation and Implications

    Get PDF
    Gas generation and flow in soil is relevant to applications such as the fate of leaking geologically sequestered carbon dioxide, natural releases of methane from peat and marine sediments, and numerous electro‐thermal remediation technologies for contaminated sites, such as electrical resistance heating. While traditional multiphase flow models generally perform poorly in describing unstable gas flow phenomena in soil, Macroscopic Invasion Percolation (MIP) models can reproduce key features of its behavior. When coupled with continuum heat and mass transport models, MIP has the potential to simulate complex subsurface scenarios. However, coupled MIP‐continuum models have not yet been validated against experimental data and lack key mechanisms required for electro‐thermal scenarios. Therefore, the purpose of this study was to (a) incorporate mechanisms required for steam generation and flow into an existing MIP‐continuum model (ET‐MIP), (b) validate ET‐MIP against an experimental lab‐scale electrical resistance heating study, and (c) investigate the sensitivity of water boiling and gas (steam) transport to key parameters. Water boiling plateaus (i.e., latent heat), heat recirculation within steam clusters, and steam collapse (i.e., condensation) mechanisms were added to ET‐MIP. ET‐MIP closely matched observed transient gas saturation distributions, measurements of electrical current, and temperature distributions. Heat recirculation and cluster collapse were identified as the key mechanisms required to describe gas flow dynamics using a MIP algorithm. Sensitivity analysis revealed that gas generation rates and transport distances, particularly through regions of cold water, are sensitive to the presence of dissolved gases

    Modelling of Multiphase Fluid flow in Heterogeneous Reservoirs

    Get PDF
    Computational modeling of multiphase fluid flow in highly heterogenous problems with complicated geometries is a challenging problem for reservoir engineers, with a rich research in establishing best methods and approaches. The novelty in this work is centered around the implementation and comparison of simulation results from two software - the open source ICFESRT and the commercial software ECLIPSE - for a two-phase multiphase problem (oilwater) in both simple and complex geometries. The work involves: (a) implementation and comparison of simulation results from the two software on three different, hypothetical but typical geometries; (b) consideration of a real field case and the associated data analysis, rock characterization, and geostatistics of a real field representative of a highly heterogeneous reservoir; and (c) implementation of both software on the real field case for predictions of oil production at the site, and comparison of the simulation results from the two software. The initial comparison of simulation results for was carried out using three hypothetical (but common) geometries, these being: (a) a quarter five spot with one geological layer; (b) the same geometry as in (a) but with a vertical heterogeneity i.e. 5 different geological layers; (c) and lastly a full 5 spot with 5 different geological layers was implemented. Three different mesh resolutions were applied in both software and comparisons were carried out for mesh-independency. The results showed that in all these three scenarios, good agreement was observed between IC-FERST (coarse mesh) and ECLIPSE (fine mesh) with an average percentage difference at the production well ranging between 2.5% and 10.5% for the oil production and 12% and 26% for the water production. Both the ICFERST and ECLIPSE were subsequently implemented on a real, heterogeneous field – which consisted of 25 producing wells and 8 injections wells. Prior to the software implementation, a data analysis and rock characterization was carried out –Using data from the 33 wells. The logging and core data (a total of 30,000 log readings and 1150 core samples) were utilized and a novel rock characterization technique -Balaha Rock Characterization Code- was implemented to allow for the optimal clustering of rock types within the reservoir, The rock characterization resulted in identifying 7 rock types with their unique porosity-hydraulic permeability relationships. Subsequently, geostatistical methods were implemented – which enabled populating the computational cells of the two software with the corresponding reservoir properties (porosity, hydraulic permeability). To achieve the property population into the unstructured computational domain of the ICFERST software, a newly-developed script was written in Matlab and Python. The rock properties data populated on IC-FERST consist of porosity, permeability, relative permeability, capillary pressure and connate water saturation. A further comparison between the IC-FERST simulation results with the corresponding ECLIPSE simulations was carried out – were all simulations were carried out for a period of 40 years. The percentage differences between the two software simulations were estimated for : (i) ten individual production wells and (ii) the total of all production wells. The results showed that a good agreement exists between the IC-FERST and ECLIPSE simulations, with an average percentage difference for the total oil production of 10.5%, the total water production of 26% and the total water injection of 14%. The results for the ten individual wells showed an average percentage difference of 15.5% ranging from 3 to 29% for the oil production in the late time period. Slightly higher differences were observed when the overall period was considered, due to the large difference at the early time period of the simulation. The results indicated that IC-FERST, when incorporating the necessary rock characterization information – which highlight the heterogeneity of the reservoir – can produce results that can compete with the industry standard ECLIPSE. Additional aspects need to be considered within the current real field IC-FERST simulation, the inclusion of possible fractures and faults, as these were incorporated in the computational domain of ECLIPSE. Additional capabilities also still need to be embedded into IC-FERST, such as the incorporation of the fluid density and viscosity variations with pressure and the consideration of the volume factors, in order to enhance its competitiveness with existing commercial reservoirs simulators such as ECLIPSE

    Multiscale Methods for Stochastic Collocation of Mixed Finite Elements for Flow in Porous Media

    Get PDF
    This thesis contains methods for uncertainty quantification of flow in porous media through stochastic modeling. New parallel algorithms are described for both deterministic and stochastic model problems, and are shown to be computationally more efficient than existing approaches in many cases.First, we present a method that combines a mixed finite element spatial discretization with collocation in stochastic dimensions on a tensor product grid. The governing equations are based on Darcy's Law with stochastic permeability. A known covariance function is used to approximate the log permeability as a truncated Karhunen-Loeve expansion. A priori error analysis is performed and numerically verified.Second, we present a new implementation of a multiscale mortar mixed finite element method. The original algorithm uses non-overlapping domain decomposition to reformulate a fine scale problem as a coarse scale mortar interface problem. This system is then solved in parallel with an iterative method, requiring the solution to local subdomain problems on every interface iteration. Our modified implementation instead forms a Multiscale Flux Basis consisting of mortar functions that represent individual flux responses for each mortar degree of freedom, on each subdomain independently. We show this approach yields the same solution as the original method, and compare the computational workload with a balancing preconditioner.Third, we extend and combine the previous works as follows. Multiple rock types are modeled as nonstationary media with a sum of Karhunen-Loeve expansions. Very heterogeneous noise is handled via collocation on a sparse grid in high dimensions. Uncertainty quantification is parallelized by coupling a multiscale mortar mixed finite element discretization with stochastic collocation. We give three new algorithms to solve the resulting system. They use the original implementation, a deterministic Multiscale Flux Basis, and a stochastic Multiscale Flux Basis. Multiscale a priori error analysis is performed and numerically verified for single-phase flow. Fourth, we present a concurrent approach that uses the Multiscale Flux Basis as an interface preconditioner. We show the preconditioner significantly reduces the number of interface iterations, and describe how it can be used for stochastic collocation as well as two-phase flow simulations in both fully-implicit and IMPES models

    Multiscale, multiphysics modeling of subsurface engineering applications

    Get PDF
    Fluid flow, particle transport, and chemical reactions in porous media play a vital role in various disciplines, including hydrology, medicine, and engineering. In particular, in the petroleum industry, subsurface engineering applications involving injection or production of fluids are associated with physical and chemical processes at the pore-scale (nano/microscale). These processes encompass fluid-rock interactions that can determine and alter the fluid behavior and rock properties at reservoir scales (macroscale). Developing engineering tools to probe and link pore-scale processes to reservoir-scale remains a fundamental research challenge to enhance our understanding and our ability to predict the observed phenomena in the subsurface In this work, I explored various subsurface engineering applications of multiphysics, multiscale modeling paradigms including pore-scale network models, experimental data, and reservoir scale simulation to investigate the role of physical and chemical interactions on the evolution of rock properties and fluid behavior. Three such applications were studied: (1) formation damage due to particle plugging during hydraulic fracturing as a result of proppant crushing and fluid invasion, (2) the evolution of migration pathways due to chemical diagenesis in unconventional reservoirs, and (3) plume characterization, storage mechanisms, and well-based monitoring during CO2 sequestration in saline aquifers. First, I employed a particle plugging simulator that integrates pore-scale phenomena with hydraulic fracturing simulation at the reservoir-scale to examine the effects of fracturing fluid invasion and proppant crushing on the formation permeability damage at the matrix-fracture interface. The model is based on the generation of 3D pore networks that capture the pore space topology and serve as the frame for fluid flow and particle transport simulations. The pore networks are coupled with a commercial reservoir-scale fracture simulator that provides the fracturing process macroscale characteristics to compute the particles' retention and their effect on the formation permeability. This integrated model aims to enhance the design and modeling of hydraulic-fracturing operations in unconventional shale reservoirs by considering the pore-scale dynamics at the matrix-fracture interface. Next, I incorporated a modeling workflow that integrates mineralogical, petrophysical, and chemical data to delve into the influence of chemical diagenesis on macroscopic properties from a pore-scale perspective. The pore-scale model proposed has two main components. The first component involves examining the depositional environment, mineralogy, and pore structure characteristics to identify diagenetic controls on the reservoir quality. The second component comprises the generation of hybrid pore network models representing the pore space, followed by the numerical simulation of fluid transport and mineral reactions related to relevant diagenetic events. The model aims to improve our understanding of the influence of diagenetic events on the migration pathways' evolution. Finally, I investigated the geological sequestration of CO2 in saline aquifers to characterize and monitor the temporal and spatial evolution of the CO2 plume. The integrated modeling framework used provides the means to ascertain the relative influence of multiple parameters on the plume characteristics and the contributing trapping mechanisms. The selected parameters involve facies distribution, aquifer-water composition, heterogeneity and anisotropy of petrophysical properties, transport physics, and operational variables like injection rate and bottomhole pressure. Several well-based fluid variables are monitored to assess the plume evolution and identify behavior correlations between the near-wellbore and plume region properties

    Une méthode mixte multi-échelles pour un simulateur de réservoir biphasé

    Get PDF
    A multiscale hybrid mixed finite element method is presented in this paper to solve two-phase flow equations on heterogeneous media under the effect of gravitational segregation. It is designed to cope with the complex geometry and inherent multiscale nature of the rocks, leading to stable and accurate multi-physics reservoir simulations. This multiscale approach makes use of coarse scale fluxes between subregions (macro domains) that allow to reduce substantially the dominant computational costs associated with the flux/pressure kernel embedded in the numerical model. As such, larger scale problems can be approximated in a reasonable computational time. Dividing the problems into macro domains leads to a hierarchy of meshes and approximation spaces, allowing the efficient use of static condensation and parallel computation strategies. The method documented in this work utilizes discretizations based on a general domain partition formed by poly-hedral subregions. The normal flux between these subregions is associated with a finite dimensional trace space. The global system to be solved for the fluxes and pressures is expressed only in terms of the trace variables and of a piecewise constant pressure associated with each subregion. The fine scale features are resolved by mixed finite element approximations using fine flux and pressure representations inside each subregion, and the trace variable (i.e. normal flux) as Neumann boundary conditions. This property implies that the flux approximation is globally H(div)-conforming, and, as in classical mixed formulations, local mass conservation is observed at the micro-scale elements inside the subregions, an essential property for flows in heterogeneous media

    Aeronautical engineering: A continuing bibliography with indexes (supplement 270)

    Get PDF
    This bibliography lists 600 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 296)

    Get PDF
    This bibliography lists 592 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore