26 research outputs found

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Electromagnetic modeling for SAR polarimetry and interferometry

    Get PDF
    Investigation of the globe remotely from hundreds of kilometers altitude, and fast growing of environmental and civil problems, triggered the necessity of development of new and more advanced techniques. Electromagnetic modeling of polarimetry and interferometry has always been a key driver in remote sensing research, ever since of the First pioneering sensors were launched. Polarimetric and interferometric SAR (Synthetic Aperture Radar) surveillance and mapping of the Earth surface has been attracting lots of interest since 1970s. This thesis covers two SAR's main techniques: (1) space-borne Interferometric Synthetic Aperture Radar (InSAR), which has been used to measure the Earth's surface deformation widely, and (2) SAR Polarimetry, which has been used to retrieve soil and vegetation physical parameters in wide areas. Time-series InSAR methodologies such as PSI (Permanent Scatterer Interferometry) are designed to estimate the temporal characteristics of the Earth's deformation rates from multiple InSAR images acquired over time. These techniques also enable us to overcome the limitations that conventional InSAR suffer, with a very high accuracy and precision. In this thesis, InSAR time-series analysis and modeling basis, as well as a case study in the Campania region (Italy), have been addressed. The Campania region is characterized by intense urbanization, active volcanoes, complicated fault systems, landslides, subsidence, and hydrological instability; therefore, the stability of public transportation structures is highly concerned. Here Differential Interferometric Synthetic Aperture Radar (DInSAR), and PSI techniques have been applied to a stack of 25 X-band radar images of Cosmo-SkyMed (CSK) satellites collected over an area in Campania (Italy), in order to monitor the railways' stability. The study area was already under investigation with older, low-resolution sensors like ERS1&2 and ENVISAT-ASAR before, but the number of obtained persistent scatterers (PSs) was too limited to get useful results. With regard to SAR polarimetry, in this thesis a fully polarimetirc SAR simulator has been presented, which is based on the use of sound direct electromagnetic models and it is able to provide as output the simulated raw data of all the three polarization channels in such a way as to obtain the correct covariance or coherence matrixes on the final focused polarimetic radar images. A fast Fourier-domain approach is used for the generation of raw signals. Presentation of theory is supplemented by meaningful experimental results, including a comparison of simulations with real polarimetric scattering data

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Review of Polarimetric and ionospheric effects on Sar, Insar and Palsar systems: requirements and correction methods

    Get PDF
    Este estudio proporciona una actualización de las herramientas polarimétricas que se utilizan actualmente para la extracción óptima de la información a partir de imágenes de Radares de Apertura Sintética, SAR, de imágenes Interferométricas de SAR, InSAR e imágenes polarimétricas de SAR en la banda L, PALSAR. Los fundamentos de la teoría polarimétrica son discutidos en el contexto del radar de apertura sintética (SAR). Se revisa la calibración polarimétrica SAR, que es un tema importante para la extracción de información. Es considerada la extracción de información usando los parámetros de ondas dispersadas recibidas. Se proponen algunos esquemas de corrección ionosférica para las ondas transmitidas por el radar de apertura sintética (SAR) y para la interferometría SAR polarimétrica (PolInSAR) en el espacio. La variación temporal y espacial de la densidad de electrónica en la alta atmosfera afecta la propagación del pulso de radar dando lugar a distorsiones de la imagen. Se estima el Contenido Electrónico Total (CET) mediante la aplicación de la ecuación de Appleton-Hartree debido a distorsiones de enfoque, polarimetría e interferometría. Se propo-ne un estimador combinado que produce estimaciones diferenciales de CET. Se discute además el efecto de la estructura vertical de la ionosfera desde la fase interferométrica y se describen instrucciones importantes para la investigación futura.This study provides an update of the polarimetric tools currently used for optimal extraction of information from polarimetric SAR (Synthetic Aperture Radar), INSAR (Interferometric Synthetic Aperture Radar) and PALSAR (Phase Array L-band Synthetic Aperture Radar) imagery. The fundamentals of polarimetric theory are discussed in the context of synthetic aperture radar (SAR). Polarimetric SAR calibration, which is important for the extraction of subject information, is reviewed. Extraction of information using the received scattered wave is considered. Some schemes for ionospheric correction to synthetic aperture radar (SAR) and the wave interferometry (PolInSAR) are proposed. Temporal and spatial variations of the electronic density in the upper atmosphere affect radar pulse propagation and, thereby, result in distortion of the image. Due to distortions of focus, polarimetry and interferometry, the Total Electron Content (TEC) has been estimated by applying the Appleton-Hartree equation. We propose a combined estimator that reliably estimates of TEC differentials. We also discuss the effect of the vertical structure of the ionosphere from the interferometric phase and outline important avenues for future research.Fil: Rios, Victor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Departamento de Fisica; Argentin

    Very High Resolution Tomographic SAR Inversion for Urban Infrastructure Monitoring — A Sparse and Nonlinear Tour

    Get PDF
    The topic of this thesis is very high resolution (VHR) tomographic SAR inversion for urban infrastructure monitoring. To this end, SAR tomography and differential SAR tomography are demonstrated using TerraSAR-X spotlight data for providing 3-D and 4-D (spatial-temporal) maps of an entire high rise city area including layover separation and estimation of deformation of the buildings. A compressive sensing based estimator (SL1MMER) tailored to VHR SAR data is developed for tomographic SAR inversion by exploiting the sparsity of the signal. A systematic performance assessment of the algorithm is performed regarding elevation estimation accuracy, super-resolution and robustness. A generalized time warp method is proposed which enables differential SAR tomography to estimate multi-component nonlinear motion. All developed methods are validated with both simulated and extensive processing of large volumes of real data from TerraSAR-X
    corecore