172 research outputs found

    Use of remote-sensing reflectance to constrain a data assimilating marine biogeochemical model of the Great Barrier Reef

    Get PDF
    Skillful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically derived relationships between IOPs and variables such as chlorophyll-a concentration (Chl a), total suspended solids (TSS) and coloured dissolved organic matter (CDOM) have been shown to have errors that can exceed 100% of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due to the additional signal from bottom reflectance. Rather than assimilate quantities calculated using IOP algorithms, this study demonstrates the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance (RSR). To assimilate the observed RSR, we use an in-water optical model to produce an equivalent simulated RSR and calculate the mismatch between the observed and simulated quantities to constrain the BGC model with a deterministic ensemble Kalman filter (DEnKF). The traditional assumption that simulated surface Chl a is equivalent to the remotely sensed OC3M estimate of Chl a resulted in a forecast error of approximately 75 %. We show this error can be halved by instead using simulated RSR to constrain the model via the assimilation system. When the analysis and forecast fields from the RSR-based assimilation system are compared with the non-assimilating model, a comparison against independent in situ observations of Chl a, TSS and dissolved inorganic nutrients (NO3, NH4 and DIP) showed that errors are reduced by up to 90 %. In all cases, the assimilation system improves the simulation compared to the non-assimilating model. Our approach allows for the incorporation of vast quantities of remote-sensing observations that have in the past been discarded due to shallow water and/or artefacts introduced by terrestrially derived TSS and CDOM or the lack of a calibrated regional IOP algorithm

    Refining a Deep Learning-based Formant Tracker using Linear Prediction Methods

    Full text link
    In this study, formant tracking is investigated by refining the formants tracked by an existing data-driven tracker, DeepFormants, using the formants estimated in a model-driven manner by linear prediction (LP)-based methods. As LP-based formant estimation methods, conventional covariance analysis (LP-COV) and the recently proposed quasi-closed phase forward-backward (QCP-FB) analysis are used. In the proposed refinement approach, the contours of the three lowest formants are first predicted by the data-driven DeepFormants tracker, and the predicted formants are replaced frame-wise with local spectral peaks shown by the model-driven LP-based methods. The refinement procedure can be plugged into the DeepFormants tracker with no need for any new data learning. Two refined DeepFormants trackers were compared with the original DeepFormants and with five known traditional trackers using the popular vocal tract resonance (VTR) corpus. The results indicated that the data-driven DeepFormants trackers outperformed the conventional trackers and that the best performance was obtained by refining the formants predicted by DeepFormants using QCP-FB analysis. In addition, by tracking formants using VTR speech that was corrupted by additive noise, the study showed that the refined DeepFormants trackers were more resilient to noise than the reference trackers. In general, these results suggest that LP-based model-driven approaches, which have traditionally been used in formant estimation, can be combined with a modern data-driven tracker easily with no further training to improve the tracker's performance.Comment: Computer Speech and Language, Vol. 81, Article 101515, June 202
    • …
    corecore