200 research outputs found

    DESIGN & FPGA IMPLEMENTATION OF EFFICIENT MULTIBAND OFDM USING DWT/DUC/DDC

    Get PDF
    To increase data rate of wireless medium with higher performance, OFDM (orthogonal frequency division multiplexing) is used. Here DWT (Discrete wavelet transforms) is adopted in place of FFT (Fast Fourier transform) for frequency translation. Modulation schemes such as 16-QAM (Quadrature amplitude modulation) have been used in the development of OFDM system using DWT. In this paper, I propose a DWT-IDWT based OFDM transmitter and receiver .It has been proven that all the wavelet families better over the IFFT-FFT implementation.. The wavelet filter used in the project is Bi-orthoganal (9,7) with N=2. The Project also include implementation of Digital Up Converter and Digital Down Converter at the transmitter and receiver part respectively. The project is implemented on FPGA by designing using Verilog HDL and System Generator

    Advancements of MultiRate Signal processing for Wireless Communication Networks: Current State Of the Art

    Get PDF
    With the hasty growth of internet contact and voice and information centric communications, many contact technologies have been urbanized to meet the stringent insist of high speed information transmission and viaduct the wide bandwidth gap among ever-increasing high-data-rate core system and bandwidth-hungry end-user complex. To make efficient consumption of the limited bandwidth of obtainable access routes and cope with the difficult channel environment, several standards have been projected for a variety of broadband access scheme over different access situation (twisted pairs, coaxial cables, optical fibers, and unchanging or mobile wireless admittance). These access situations may create dissimilar channel impairments and utter unique sets of signal dispensation algorithms and techniques to combat precise impairments. In the intended and implementation sphere of those systems, many research issues arise. In this paper we present advancements of multi-rate indication processing methodologies that are aggravated by this design trend. The thesis covers the contemporary confirmation of the current literature on intrusion suppression using multi-rate indication in wireless communiquE9; networks

    A convex formulation for hyperspectral image superresolution via subspace-based regularization

    Full text link
    Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images which combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research due to the increasing availability of HSIs and MSIs retrieved from the same geographical area. We formulate this problem as the minimization of a convex objective function containing two quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur, different resolutions, and additive noise. The regularizer, a form of vector Total Variation, promotes piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands. The downsampling operator accounting for the different spatial resolutions, the non-quadratic and non-smooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally "live" in a low-dimensional subspace and by tailoring the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), which is an instance of the Alternating Direction Method of Multipliers (ADMM), to this optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated, and we obtain an effective algorithm that outperforms the state-of-the-art, as illustrated in a series of experiments with simulated and real-life data.Comment: IEEE Trans. Geosci. Remote Sens., to be publishe

    Performance investigation of WOFDM for 5G wireless networks

    Get PDF
    Nowadays, emerging wireless networks scenarios such as the proposed systems for 5G is discussed widely with diverse requirements. Orthogonal Frequency Division Multiplexing (OFDM) is a conservative proposal which is used to build 5G WOFDM system (Wavelet OFDM system). The simulation of the system is initialized with BPSK then with QAM and 64-QAM the system is improved by increasing the number of levels of Discrete Wavelet Transform to five levels and finally compared with original system to prove that the it is convenient for 5G Wireless networks

    Fusing Multiple Multiband Images

    Full text link
    We consider the problem of fusing an arbitrary number of multiband, i.e., panchromatic, multispectral, or hyperspectral, images belonging to the same scene. We use the well-known forward observation and linear mixture models with Gaussian perturbations to formulate the maximum-likelihood estimator of the endmember abundance matrix of the fused image. We calculate the Fisher information matrix for this estimator and examine the conditions for the uniqueness of the estimator. We use a vector total-variation penalty term together with nonnegativity and sum-to-one constraints on the endmember abundances to regularize the derived maximum-likelihood estimation problem. The regularization facilitates exploiting the prior knowledge that natural images are mostly composed of piecewise smooth regions with limited abrupt changes, i.e., edges, as well as coping with potential ill-posedness of the fusion problem. We solve the resultant convex optimization problem using the alternating direction method of multipliers. We utilize the circular convolution theorem in conjunction with the fast Fourier transform to alleviate the computational complexity of the proposed algorithm. Experiments with multiband images constructed from real hyperspectral datasets reveal the superior performance of the proposed algorithm in comparison with the state-of-the-art algorithms, which need to be used in tandem to fuse more than two multiband images

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications
    • …
    corecore