28 research outputs found

    A Decision Support System for Assessing and Prioritizing Sustainable Urban Transportation in Metaverse

    Get PDF
    Blockchain technology and metaverse advancements allow people to create virtual personalities and spend time online. Integrating public transportation into the metaverse could improve services and collect user data. This study introduces a hybrid decision-making framework for prioritizing sustainable public transportation in Metaverse under q-rung orthopair fuzzy set (q-ROFS) context. In this regard, firstly q-rung orthopair fuzzy (q-ROF) generalized Dombi weighted aggregation operators (AOs) and their characteristics are developed to aggregate the q-ROF information. Second, a q-ROF information-based method using the removal effects of criteria (MEREC) and stepwise weight assessment ratio analysis (SWARA) models are proposed to find the objective and subjective weights of criteria, respectively. Then, a combined weighting model is taken to determine the final weights of the criteria. Third, the weighted sum product (WISP) method is extended to q-ROFS context by considering the double normalization procedures, the proposed operators and integrated weighting model. This method has taken the advantages of two normalization processes and four utility measures that approve the effect of benefit and cost criteria by using weighted sum and weighted product models. Next, to demonstrate the practicality and effectiveness of the presented method, a case study of sustainable public transportation in metaverse is presented in the context of q-ROFSs. The findings of this study confirms that the proposed model can recommend more feasible performance while facing numerous influencing factors and input uncertainties, and thus, provides a wider range of application

    A hybrid decision support system with golden cut and bipolar q-ROFSs for evaluating the risk-based strategic priorities of fintech lending for clean energy projects

    Get PDF
    In the last decade, the risk evaluation and the investment decision are among the most prominent issues of efficient project management. Especially, the innovative financial sources could have some specific risk appetite due to the increasing return of investment. Hence, it is important to uncover the risk factors of fintech investments and investigate the possible impacts with an integrated approach to the strategic priorities of fintech lending. Accordingly, this study aims to analyze a unique risk set and the strategic priorities of fintech lending for clean energy projects. The most important contributions to the literature can be listed as to construct an impact-direction map of risk-based strategic priorities for fintech lending in clean energy projects and to measure the possible influences by using a hybrid decision making system with golden cut and bipolar q-rung orthopair fuzzy sets. The extension of multi stepwise weight assessment ratio analysis (M-SWARA) is applied for weighting the risk factors of fintech lending. The extension of elimination and choice translating reality (ELECTRE) is employed for constructing and ranking the risk-based strategic priorities for clean energy projects. In this process, data is obtained with the evaluation of three different decision makers. The main superiority of the proposed model by comparing with the previous models in the literature is that significant improvements are made to the classical SWARA method so that a new technique is created with the name of M-SWARA. Hence, the causality analysis between the criteria can also be performed in this proposed model. The findings demonstrate that security is the most critical risk factor for fintech lending system. Moreover, volume is found as the most critical risk-based strategy for fintech lending. In this context, fintech companies need to take some precautions to effectively manage the security risk. For this purpose, the main risks to information technologies need to be clearly identified. Next, control steps should be put for these risks to be managed properly. Furthermore, it has been determined that the most appropriate strategy to increase the success of the fintech lending system is to increase the number of financiers integrated into the system. Within this framework, the platform should be secure and profitable to persuade financiers.Optimization and upgrading of Industrial structure in Henan Province ; Key Scientific Research Project of Colleges and Universities in Henan Provinc

    Approaches to multi-attribute group decision-making based on picture fuzzy prioritized Aczel–Alsina aggregation information

    Get PDF
    The Aczel-Alsina t-norm and t-conorm were derived by Aczel and Alsina in 1982. They are modified forms of the algebraic t-norm and t-conorm. Furthermore, the theory of picture fuzzy values is a very valuable and appropriate technique for describing awkward and unreliable information in a real-life scenario. In this research, we analyze the theory of averaging and geometric aggregation operators (AOs) in the presence of the Aczel-Alsina operational laws and prioritization degree based on picture fuzzy (PF) information, such as the prioritized PF Aczel-Alsina average operator and prioritized PF Aczel-Alsina geometric operator. Moreover, we examine properties such as idempotency, monotonicity and boundedness for the derived operators and also evaluated some important results. Furthermore, we use the derived operators to create a system for controlling the multi-attribute decision-making problem using PF information. To show the approach's effectiveness and the developed operators' validity, a numerical example is given. Also, a comparative analysis is presented

    Determine OWA operator weights using kernel density estimation

    Get PDF
    Some subjective methods should divide input values into local clusters before determining the ordered weighted averaging (OWA) operator weights based on the data distribution characteristics of input values. However, the process of clustering input values is complex. In this paper, a novel probability density based OWA (PDOWA) operator is put forward based on the data distribution characteristics of input values. To capture the local cluster structures of input values, the kernel density estimation (KDE) is used to estimate the probability density function (PDF), which fits to the input values. The derived PDF contains the density information of input values, which reflects the importance of input values. Therefore, the input values with high probability densities (PDs) should be assigned with large weights, while the ones with low PDs should be assigned with small weights. Afterwards, the desirable properties of the proposed PDOWA operator are investigated. Finally, the proposed PDOWA operator is applied to handle the multicriteria decision making problem concerning the evaluation of smart phones and it is compared with some existing OWA operators. The comparative analysis shows that the proposed PDOWA operator is simpler and more efficient than the existing OWA operator

    Power of Continuous Triangular Norms with Application to Intuitionistic Fuzzy Information Aggregation

    Full text link
    The paper aims to investigate the power operation of continuous triangular norms (t-norms) and develop some intuitionistic fuzzy information aggregation methods. It is proved that a continuous t-norm is power stable if and only if every point is a power stable point, and if and only if it is the minimum t-norm, or it is strict, or it is an ordinal sum of strict t-norms. Moreover, the representation theorem of continuous t-norms is used to obtain the computational formula for the power of continuous t-norms. Based on the power operation of t-norms, four fundamental operations induced by a continuous t-norm for the intuitionistic fuzzy (IF) sets are introduced. Furthermore, various aggregation operators, namely the IF weighted average (IFWA), IF weighted geometric (IFWG), and IF mean weighted average and geometric (IFMWAG) operators, are defined, and their properties are analyzed. Finally, a new decision-making algorithm is designed based on the IFMWAG operator, which can remove the hindrance of indiscernibility on the boundaries of some classical aggregation operators. The practical applicability, comparative analysis, and advantages of the study with other decision-making methods are furnished to ascertain the efficacy of the designed method

    Classical Dynamic Consensus and Opinion Dynamics Models: A Survey of Recent Trends and Methodologies

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consensus reaching is an iterative and dynamic process that supports group decision-making models by guiding decision-makers towards modifying their opinions through a feedback mechanism. Many attempts have been recently devoted to the design of efficient consensus reaching processes, especially when the dynamism is dependent on time, which aims to deal with opinion dynamics models. The emergence of novel methodologies in this field has been accelerated over recent years. In this regard, the present work is concerned with a systematic review of classical dynamic consensus and opinion dynamics models. The most recent trends of both models are identified and the developed methodologies are described in detail. Challenges of each model and open problems are discussed and worthwhile directions for future research are given. Our findings denote that due to technological advancements, a majority of recent literature works are concerned with the large-scale group decision-making models, where the interactions of decision-makers are enabled via social networks. Managing the behavior of decision-makers and consensus reaching with the minimum adjustment cost under social network analysis have been the top priorities for researchers in the design of classical consensus and opinion dynamics models

    Information Volume of Mass Function

    Get PDF
    Given a probability distribution, its corresponding information volume is Shannon entropy. However, how to determine the information volume of a given mass function is still an open issue. Based on Deng entropy, the information volume of mass function is presented in this paper. Given a mass function, the corresponding information volume is larger than its uncertainty measured by Deng entropy. In addition, when the cardinal of the frame of discernment is identical, both the total uncertainty case and the BPA distribution of the maximum Deng entropy have the same information volume. Some numerical examples are illustrated to show the efficiency of the proposed information volume of mass function

    Multicriteria Consensus Models to Support Intelligent Group Decision-Making

    Get PDF
    The development of intelligent systems is progressing rapidly, thanks to advances in information technology that enable collective, automated, and effective decision-making based on information collected from diverse sources. Group decision-making (GDM) is a key part of intelligent decision-making (IDM), which has received considerable attention in recent years. IDM through GDM refers to a decision-making problem where a group of intelligent decision-makers (DMs) evaluate a set of alternatives with respect to specific attributes. Intelligent communication among DMs aims to give orders to the available alternatives. However, GDM models developed for IDM must incorporate consensus support models to effectively integrate input from each DM into the final decision. Many efforts have been made to design consensus models to support IDM, depending on the decision problem or environment. Despite promising results, significant gaps remain in research on the design of such support models. One major drawback of existing consensus models is their dependence on the type of decision environment, making them less generalizable. Moreover, these models are often static and cannot respond to dynamic changes in the decision environment. Another limitation is that consensus models for large-scale decision environments lack an efficient communication regime to enable DM interactions. To address these challenges, this dissertation proposes developing consensus models to support IDM through GDM. To address the generalization issue of existing consensus models, reinforcement learning (RL) is proposed. RL agents can be built on the Markov decision process to enable IDM, potentially removing the generalization issue of consensus support models. Contrary to most consensus models, which assume static decision environments, this dissertation proposes a computationally efficient dynamic consensus model to support dynamic IDM. Finally, to facilitate secure and efficient interactions among intelligent DMs in large-scale problems, Blockchain technology is proposed to speed up the consensus process. The proposed communication regime also includes trust-building mechanisms that employ Blockchain protocols to remove enduring and limitative assumptions on opinion similarity among agents

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches
    corecore