176 research outputs found

    An interval-valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives

    Get PDF
    This article proposes a framework to handle multiattribute group decision making problems with incomplete pairwise comparison preference over decision alternatives where qualitative and quantitative attribute values are furnished as linguistic variables and crisp numbers, respectively. Attribute assessments are then converted to interval-valued intuitionistic fuzzy numbers (IVIFNs) to characterize fuzziness and uncertainty in the evaluation process. Group consistency and inconsistency indices are introduced for incomplete pairwise comparison preference relations on alternatives provided by the decision-makers (DMs). By minimizing the group inconsistency index under certain constraints, an auxiliary linear programming model is developed to obtain unified attribute weights and an interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS). Attribute weights are subsequently employed to calculate distances between alternatives and the IVIFPIS for ranking alternatives. An illustrative example is provided to demonstrate the applicability and effectiveness of this method

    An Efficient Ranking Technique for Intuitionistic Fuzzy Numbers with Its Application in Chance Constrained Bilevel Programming

    Get PDF
    The aim of this paper is to develop a new ranking technique for intuitionistic fuzzy numbers using the method of defuzzification based on probability density function of the corresponding membership function, as well as the complement of nonmembership function. Using the proposed ranking technique a methodology for solving linear bilevel fuzzy stochastic programming problem involving normal intuitionistic fuzzy numbers is developed. In the solution process each objective is solved independently to set the individual goal value of the objectives of the decision makers and thereby constructing fuzzy membership goal of the objectives of each decision maker. Finally, a fuzzy goal programming approach is considered to achieve the highest membership degree to the extent possible of each of the membership goals of the decision makers in the decision making context. Illustrative numerical examples are provided to demonstrate the applicability of the proposed methodology and the achieved results are compared with existing techniques

    Consistency based completion approaches of incomplete preference relations in uncertain decision contexts.

    Get PDF
    Uncertainty, hesitation and vagueness are inherent to human beings when articulating opinions and preferences. Therefore in decision making situations it might well be the case that experts are unable to express their opinions in an accurate way. Under these circumstances, various families of preference relations (PRs) have been proposed (linguistic, intuitionistic and interval fuzzy PRs) to allow the experts to manifest some degree of hesitation when enunciating their opinions. An extreme case of uncertainty happens when an expert is unable to differentiate the degree up to which one preference is preferred to another. Henceforth, incomplete preference relations are possible. It is worth to bear in mind that incomplete information does not mean low quality information, on the contrary, in many occasions experts might prefer no to provide information in other to keep consistency. Consequently mechanism to deal with incomplete information in decision making are necessary. This contribution presents the main consistency based completion approaches to estimate incomplete preference values in linguistic, intuitionistic and interval fuzzy PRs

    Managing Incomplete Preference Relations in Decision Making: A Review and Future Trends

    Get PDF
    In decision making, situations where all experts are able to efficiently express their preferences over all the available options are the exception rather than the rule. Indeed, the above scenario requires all experts to possess a precise or sufficient level of knowledge of the whole problem to tackle, including the ability to discriminate the degree up to which some options are better than others. These assumptions can be seen unrealistic in many decision making situations, especially those involving a large number of alternatives to choose from and/or conflicting and dynamic sources of information. Some methodologies widely adopted in these situations are to discard or to rate more negatively those experts that provide preferences with missing values. However, incomplete information is not equivalent to low quality information, and consequently these methodologies could lead to biased or even bad solutions since useful information might not being taken properly into account in the decision process. Therefore, alternative approaches to manage incomplete preference relations that estimates the missing information in decision making are desirable and possible. This paper presents and analyses methods and processes developed on this area towards the estimation of missing preferences in decision making, and highlights some areas for future research

    Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets

    Get PDF

    An Interval-Valued Intuitionistic Fuzzy TOPSIS Method Based on an Improved Score Function

    Get PDF
    This paper proposes an improved score function for the effective ranking order of interval-valued intuitionistic fuzzy sets (IVIFSs) and an interval-valued intuitionistic fuzzy TOPSIS method based on the score function to solve multicriteria decision-making problems in which all the preference information provided by decision-makers is expressed as interval-valued intuitionistic fuzzy decision matrices where each of the elements is characterized by IVIFS value and the information about criterion weights is known. We apply the proposed score function to calculate the separation measures of each alternative from the positive and negative ideal solutions to determine the relative closeness coefficients. According to the values of the closeness coefficients, the alternatives can be ranked and the most desirable one(s) can be selected in the decision-making process. Finally, two illustrative examples for multicriteria fuzzy decision-making problems of alternatives are used as a demonstration of the applications and the effectiveness of the proposed decision-making method

    A complex proportional assessment method for group decision making in an interval-valued intuitionistic fuzzy environment

    Get PDF
    Multi-criteria decision making is an implicational field that concerns with selecting or designing the best scenarios among a finite set of scenarios based on a finite set of criteria. Different methods and techniques for handling this issue have been proposed. Complex proportional assessment is an analytical tool for solving multi-criteria decision making problems. Originally, the COPRAS method has been developed for decision making under a deterministic environment. Since uncertainty is an unavoidable property of decision making due to a lack of knowledge, this paper suggests an extended form of the COPRAS method used for group decision making problems in an uncertain environment where such uncertainty is captured through a generalized form of fuzzy sets - the so called interval valued intuitionistic fuzzy sets. An algorithmic scheme for the COPRAS-IVIF method has been introduced thus examining its application with reference to two numerical examples. It seems that the recommended framework of COPRAS-IVIF can be satisfactorily implemented in decision making problems under ambiguous and ill-defined conditions

    A mathematical programming approach to multi-attribute decision making with interval-valued intuitionistic fuzzy assessment information

    Get PDF
    This article proposes an approach to handle multi-attribute decision making (MADM) problems under the interval-valued intuitionistic fuzzy environment, in which both assessments of alternatives on attributes (hereafter, referred to as attribute values) and attribute weights are provided as interval-valued intuitionistic fuzzy numbers (IVIFNs). The notion of relative closeness is extended to interval values to accommodate IVIFN decision data, and fractional programming models are developed based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method to determine a relative closeness interval where attribute weights are independently determined for each alternative. By employing a series of optimization models, a quadratic program is established for obtaining a unified attribute weight vector, whereby the individual IVIFN attribute values are aggregated into relative closeness intervals to the ideal solution for final ranking. An illustrative supplier selection problem is employed to demonstrate how to apply the proposed procedure

    A new multiple attribute decision making method based on linear programming methodology and novel score function and novel accuracy function of interval-valued intuitionistic fuzzy values

    Get PDF
    [[abstract]]Score functions and accuracy functions of interval-valued intuitionistic fuzzy values (IV- IFVs) play important roles in dealing with multiple attribute decision making (MADM) problems in interval-valued intuitionistic fuzzy (IVIF) environments. In this paper, we pro- pose a new MADM method using the linear programming (LP) methodology and the pro- posed new score function and the proposed new accuracy function of IVIFVs for overcom- ing the drawbacks of Wang and Chen’s MADM method (2017), which has the drawbacks that the preference order (PO) of alternatives cannot be distinguished in some cases and it gets an infinite number of solutions of the optimal weights of attributes when the sum- mation values of some columns in the transformed decision matrix (TDM) are the same, such that it obtains different POs of alternatives.[[notice]]補正完
    • …
    corecore