318 research outputs found

    An efficient and accurate solution for distribution system state estimation with multiarea architecture

    Get PDF
    Distribution system state estimation (DSSE) is an essential tool for the management and control of future distribution networks. Distribution grids are usually characterized by a very large number of nodes and different voltage levels. Moreover, different portions of the system can be operated by different distribution system operators. In this context, multiarea approaches are key tools to efficiently perform DSSE. This paper presents a novel approach for multiarea state estimation in distribution systems. The proposed algorithm is based on a two-step procedure, where the first-step local estimations are refined through a newly designed second step that allows the integration of the measurement information available in the adjacent areas. The main novelty in this paper is the mathematical analysis of the impact brought by possible measurements shared among different areas, which drives the design of a new efficient weighted least squares formulation of the second step to maximize the achievable estimation accuracy. Tests performed on the unbalanced IEEE 123-bus network prove the goodness of the new multiarea estimator proposed and show the accuracy and efficiency enhancements obtainable with respect to previous literature

    Decentralized disturbance observer-based sliding mode load frequency control in multiarea interconnected power systems

    Get PDF
    The load frequency control (LFC) problem in interconnected multiarea power systems is facing more challenges due to increasing uncertainties caused by the penetration of intermittent renewable energy resources, random changes in load patterns, uncertainties in system parameters and unmodeled system dynamics, leading to a compromised reliability of power systems and increasing the risk of power outages. In responding to this problem, this paper proposes a decentralized disturbance observer-based sliding mode LFC scheme for multiarea interlinked power systems with external disturbances. First, a reduced power system order is constructed by lumping disturbances from tie-line power deviations, load variations and the output power from renewable energy resources. The disturbance observer is then designed to estimate the lumped disturbance, which is further utilized to construct a novel integral-based sliding surface. The necessary and sufficient conditions to determine the tuning parameters of the sliding surface are then formulated in terms of linear matrix inequalities (LMIs), thus guaranteeing that the resultant sliding mode dynamics meet the H∞{H_\infty } performance requirements. The sliding mode controller is then synthesized to drive the system trajectories onto the predesigned sliding surface in finite time in the presence of a lumped disturbance. From a practical perspective, the merit of the proposed control method is to minimize the impact of the lumped disturbance on the system frequency, which has not been considered to date in sliding mode LFC design. Numerical simulations are illustrated to validate the effectiveness of the proposed LFC strategy and verify its advantages over other approaches

    Memory-based adaptive sliding mode load frequency control in interconnected power systems with energy storage

    Get PDF
    This paper presents a memory-based adaptive sliding mode load frequency control (LFC) strategy aimed at minimizing the impacts of exogenous power disturbances and parameter uncertainties on frequency deviations in interconnected power systems with energy storage. First, the dynamic model of the system is constructed by considering the participation of the energy storage system (ESS) in the conventional decentralized LFC model of a multiarea power system. A disturbance observer (DOB) is proposed to generate an online approximation of the lumped disturbance. In order to enhance the transient performance of the system and effectively mitigate the adverse effects of power fluctuations on grid frequency, a novel memory-based sliding surface is developed. This sliding surface incorporates the estimation of the lumped disturbance, as well as the past and present information of the state variables. The conservative assumption about the lumped disturbance is eased by considering the unknown upper bound of the disturbance and its first derivative. Based on the output of the proposed DOB, an adaptive continuous sliding mode controller with prescribed H performance index is introduced. This controller ensures that the sliding surface is reachable and guarantees asymptotic stability of the closed-loop system. The controller design utilizes strict linear matrix inequalities (LMIs) to achieve these objectives. Finally, the applicability and efficacy of the proposed scheme are verified through comparative simulation cases. Autho

    Two-level Robust State Estimation for Multi-Area Power Systems Under Bounded Uncertainties

    Full text link
    This paper introduces a two-level robust approach to estimate the unknown states of a large-scale power system while the measurements and network parameters are subjected to uncertainties. The bounded data uncertainty (BDU) considered in the power network is a structured uncertainty which is inevitable in practical systems due to error in transmission lines, inaccurate modelling, unmodeled dynamics, parameter variations, and other various reasons. In the proposed approach, the corresponding network is first decomposed into smaller subsystems (areas), and then a two-level algorithm is presented for state estimation. In this algorithm, at the first level, each area uses a weighted least squares (WLS) technique to estimate its own states based on a robust hybrid estimation utilizing phasor measurement units (PMUs), and at the second level, the central coordinator processes all the results from the subareas and gives a robust estimation of the entire system. The simulation results for IEEE 30-bus test system verifies the accuracy and performance of the proposed multi-area robust estimator
    • …
    corecore